Solanki / Singh | Anti-reflection and Light Trapping in c-Si Solar Cells | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 210 Seiten

Reihe: Green Energy and Technology

Solanki / Singh Anti-reflection and Light Trapping in c-Si Solar Cells


1. Auflage 2017
ISBN: 978-981-10-4771-8
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 210 Seiten

Reihe: Green Energy and Technology

ISBN: 978-981-10-4771-8
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book offers essential insights into c-Si based solar cells and fundamentals of reflection, refraction, and light trapping. The basic physics and technology for light trapping in c-Si based solar cells are covered, from traditional to advanced light trapping structures. Further, the book discusses the latest developments in plasmonics for c-Si solar cell applications, along with their future scope and the requirements for further research. The book offers a valuable guide for graduate students, researchers and professionals interested in the latest trends in solar cell technologies.

Dr. Chetan Singh Solanki is currently a professor at the Department of Energy Science and Engineering at the Indian Institute of Technology Bombay (IITB), India. He is an expert on crystalline Si technology, Si-nanostructures (including quantum dots), thin film Si solar cells, PV concentrator systems and carbon nanotubes. He received his Ph.D. from the specialist silicon laboratory, IMEC (Inter-university Micro-electronics Center, Catholic University of Leuven, Belgium). He has worked on several state-sponsored and private-sector projects exploring crystalline Si solar cells, both wafer based and thin film nanomaterial based variants. The Ministry of New and Renewable Energy has sponsored a project titled 'National Center for Photovoltaic Research and Education (NCPRE)', in which he is one of the Principal Investigators. He is also one of the Principal Investigators of 'Localization of Solar Energy through Local Assembly, Sale and Usage of 1 Million Solar Urja Lamps (SoUL)'. He has been the recipient of many awards as an investigator, has authored several books on solar PV and more than 100 international and national publications, and holds 11 patents.  Dr. Hemant Kumar Singh has more than six years of experience in the research and development of Solar Photovoltaic Technologies. He also has industry experience of in-line 6 inch multi c-Si wafer based solar cell manufacturing. Dr. Singh worked towards his Ph.D. thesis at the Department of Energy Science and Engineering (DESE) under the MNRE, Government of India funded project 'National Center for Photovoltaic Research and Education (NCPRE)' at the IIT Bombay, India. His R & D work was in fabrication and characterization of solar cells. His Ph.D. thesis focused on plasmonics based advanced light trapping structures for next-generation thin c-Si solar cell applications. Prior to his Ph.D., he completed his M.Tech in Solid State Technology from IIT Kharagpur, West Bengal, India. During his M.Tech course, his research focus was on CIGS-CdS based hetero-junction for solar applications. He also holds an M.Sc. degree in Physics with a specialization in Electronics from D.D.U. Gorakhpur University, Gorakhpur, Uttar Pradesh, India.

Solanki / Singh Anti-reflection and Light Trapping in c-Si Solar Cells jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Acknowledgements;9
3;Contents;10
4;About the Authors;14
5;List of Figures;15
6;1 Solar Cells Overview and Perspective to Light-Trapping Schemes;28
6.1;1.1 Place of Solar PV Technology in World Energy Mix;28
6.2;1.2 Historical Development of Solar Cells;30
6.3;1.3 Different Solar Cell Technologies;32
6.4;1.4 Current Status of Solar Cell Technologies;33
6.5;1.5 Basic Working Principle of Solar Cells;35
6.6;1.6 Why c-Si Solar Cell?;37
6.7;1.7 Importance of Light-Trapping Structure;39
6.8;1.8 Questions and Problems;42
6.9;References;42
7;2 c-Si Solar Cells: Physics and Technology;44
7.1;2.1 Overview of c-Si Solar Cells;44
7.2;2.2 c-Si Solar Cell: Design and Technology;46
7.2.1;2.2.1 Classification of c-Si-Based Solar Cells;46
7.2.2;2.2.2 Architecture of c-Si Solar Cells;48
7.2.3;2.2.3 Historical Development;50
7.3;2.3 Manufacturing Process of c-Si Solar Cells;53
7.4;2.4 Photovoltaic Effect in c-Si Solar Cells and Important Parameters;56
7.4.1;2.4.1 Photovoltaic Effect in c-Si Solar Cells;56
7.4.2;2.4.2 Current–Voltage Characteristics;57
7.4.3;2.4.3 Important Solar Cell Parameters;59
7.4.3.1;2.4.3.1 Open Circuit Voltage (Voc);59
7.4.3.2;2.4.3.2 Short Circuit Current (Jsc);59
7.4.3.3;2.4.3.3 Maximum Power (Pmax);59
7.4.3.4;2.4.3.4 Fill Factor (FF);60
7.4.3.5;2.4.3.5 Efficiency (?);60
7.4.3.6;2.4.3.6 Quantum Efficiency (QE);60
7.5;2.5 Role of Light-Trapping Structures;62
7.6;2.6 ITRPV Roadmap for c-Si Solar Cell Development;64
7.7;2.7 Next Generation c-Si Solar Cells;65
7.8;2.8 Questions and Problems;67
7.9;References;68
8;3 Principle of Dielectric-Based Anti-reflection and Light Trapping;70
8.1;3.1 Reflection, Refraction, and Transmission from Dielectric Interfaces;70
8.1.1;3.1.1 Reflection, Refraction, and Transmission;70
8.1.2;3.1.2 Wave Optics Based Interaction of Light with Dielectric Medium and Interfaces;72
8.1.3;3.1.3 Fresnel Equations for Reflection and Transmission;73
8.2;3.2 Dielectric Thin Films and Their Role in Reflection Reduction;76
8.3;3.3 Role of Refractive Index and Dielectric Medium;79
8.4;3.4 Multilayer Dielectric Thin Films for Reflection Reduction;82
8.5;3.5 Additional Functionality of Dielectric Anti-reflection Layers;86
8.6;3.6 Limitation of Dielectric-Based Anti-reflection Structure;88
8.7;3.7 Questions and Problems;90
8.8;References;91
9;4 Principle of Texturization for Enhanced Light Trapping;92
9.1;4.1 Surface Morphology and Its Impact on Light Reflection, Refraction and Transmission;92
9.2;4.2 Textured Surfaces in c-Si Solar Cells;96
9.3;4.3 Role of Texture Size and Shape in Light Trapping and Reflection Reduction;99
9.4;4.4 Single Side Texturing Versus Both Side Texturing;102
9.5;4.5 Most Suitable Textured Surface for Better Light Trapping;103
9.6;4.6 Implication of Texturing Based Light Trapping Structure;107
9.7;4.7 Questions and Problems;108
9.8;References;109
10;5 Texturing Process of c-Si Wafers;110
10.1;5.1 Si Crystal Structure;110
10.2;5.2 Wafer Type and Orientation for c-Si Solar Cell Fabrication;113
10.3;5.3 Chemical Process for Texturing;116
10.4;5.4 Process Control for Texture Pyramids Size and Shape Distribution;120
10.5;5.5 Industrial Processes Used for Surface Texturing;121
10.6;5.6 Practical Implications of Chemical Texturing Processes;122
10.7;5.7 Questions and Problems;123
10.8;References;123
11;6 Anti-reflection Coatings with Textured Surface for c-Si Solar Cells;125
11.1;6.1 Primary Benefit of Textured Surface in Combination with Anti-reflection Layer;125
11.2;6.2 Analysis on Cell Performance Having Textured Surface but Without and with Anti-reflection Layer;129
11.3;6.3 Dual Role of Anti-reflection Layers in c-Si Solar Cells;131
11.4;6.4 Most Suitable Light Trapping Geometry;133
11.5;6.5 Implication of Existing Light Trapping Geometry for Next Generation Solar Cells;135
11.6;6.6 Suitable Light Trapping Structure for Next Generation Solar Cells;136
11.7;6.7 Questions and Problems;138
11.8;References;140
12;7 Advancements in Traditional Light Trapping Structures;141
12.1;7.1 Traditional Light-Trapping Structures;141
12.2;7.2 Inverted Pyramid-Based Light Trapping for Thin Wafer-Based Cells;144
12.3;7.3 Back Reflectors for Enhanced Light Trapping;146
12.4;7.4 Advanced Light-Trapping Structures for Next-Generation c-Si Solar Cells;149
12.5;7.5 Questions and Problems;150
12.6;References;151
13;8 Plasmonic-Based Advanced Anti-reflection and Light Trapping: Principles and Technology;152
13.1;8.1 Plasmonics: Historical Development;152
13.1.1;8.1.1 Plasmon and Surface Plasmon Effect;152
13.1.2;8.1.2 Historical Presence and Development;153
13.2;8.2 Plasmonics in Solar Cells;154
13.2.1;8.2.1 Enhanced Light Trapping by Light Scattering Based on Particle Plasmons;156
13.2.2;8.2.2 Enhanced Light Trapping by Particle Plasmons-Based Light Concentration;156
13.2.3;8.2.3 Enhanced Light Trapping by Surface Plasmon Polariton (SPP);157
13.3;8.3 Light–Matter Interaction and Plasmonics;158
13.4;8.4 Mie Efficiencies;160
13.4.1;8.4.1 Scattering and Absorption Efficiencies;161
13.4.2;8.4.2 Parameters Influencing the Scattering/Mie Efficiencies;164
13.5;8.5 Backscattering Effect in Nanostructures;166
13.6;8.6 Extraordinary Transmission Through Metal–Dielectric Extended Layers;168
13.6.1;8.6.1 Penetration Depth and Propagation Length;169
13.6.2;8.6.2 Metal–Dielectric Extended Layers and Propagation of Light;171
13.7;8.7 Choice of Metal for Plasmonics Applications;174
13.8;8.8 Questions and Problems;176
13.9;References;178
14;9 Plasmonic-Based Light Trapping for c-Si Solar Cell Applications;181
14.1;9.1 Need for Plasmonic-Based Anti-reflection Structure in c-Si Solar Cells;181
14.2;9.2 Expectation from Plasmonic-Based Anti-reflector or Light Trapping Structure;183
14.3;9.3 Plasmonic-Based Anti-reflection Structure Suitable for c-Si Solar Cells;186
14.4;9.4 Recent Advancement in Plasmonic-Based Anti-reflector Development;189
14.4.1;9.4.1 Nanoparticles at Front;189
14.4.2;9.4.2 Nanoparticles at Back;193
14.4.3;9.4.3 Dielectric–Metal Sandwiched Structure;196
14.5;9.5 Present Limitations for Plasmonic-Based Anti-reflector Development and Implementations;197
14.6;9.6 Questions and Problems;199
14.7;References;199
15;10 Future Scope in Advanced Lighting Trapping Structure Development;201
15.1;10.1 Exploration of Metal–Dielectric Extended Layers;201
15.2;10.2 Nanoparticles at Back Surface of c-Si Solar Cells;203
15.3;10.3 Reflection Reduction Required for a Wide Range of Angle of Incidence and Compatibility of Different Light Tapping Structures;204
15.4;10.4 Efficient Light Directors;206
15.5;10.5 Combination of Multiple Light Trapping Technologies for Enhanced Cell Performance;207
15.6;10.6 Advanced Light Trapping Structure Implementation in Next-Generation Solar Cells;208
15.7;References;210



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.