Buch, Englisch, Band 28, 388 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 6757 g
Buch, Englisch, Band 28, 388 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 6757 g
Reihe: Geotechnical, Geological and Earthquake Engineering
ISBN: 978-3-319-37507-6
Verlag: Springer International Publishing
Over the past five years considerable progress has been made in Earthquake Geotechnical Engineering Design (EGED). The most recent advances are presented in this book in 6 parts.
The evaluation of the site amplification is covered in Part I of the book. In Part II the evaluation of the soil foundation stability against natural slope failure and liquefaction is treated. In the following 3 Parts of the book the EGED for different geotechnical systems is presented as follows: the design of levees and dams including natural slopes in Part III; the design of foundations and soil structure interaction analysis in Part IV; underground structures in Part V. Finally in Part VI, new topics like the design of reinforced earth retaining walls and landfills are covered.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Spatially constrained inversion of surface wave data to build shear wave velocity models.- Site Classification and spectral amplification for seismic code provisions.- Sand Liquefaction observed during Recent earthquake and Basic Laboratory Studies on Aging effect.-
Liquefaction In Tokyo Bay And Kanto Regions In The 2011 Great East Japan Earthquake.- Allowable settlement and inclination of houses defined after the 2011 Tohoku - Pacific Ocean Earthquake in Japan.- Seismic Performance of River Levees; Experience and Prediction.- Earthquake Performance Design of Dams using Destructive Potential Factors.- Seismic response of shallow footings: a promising application for the macro-element approach.- Large-Scale Modeling of Ground and Soil-Structure Earthquake Response.- Seismic displacement based design of structures: relevance of soil structure interaction.- Performance and seismic design of underground structures.- Reinforced Soil Walls during the Recent Great Earthquakes in Japan and Geo-Risk based Design.- Performance Based Seismic Design of Geosynthetic Barriers for Waste Containment.