Smith | Power Series from a Computational Point of View | Buch | 978-0-387-96516-1 | sack.de

Buch, Englisch, 132 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 230 g

Reihe: Universitext

Smith

Power Series from a Computational Point of View


Softcover Nachdruck of the original 1. Auflage 1987
ISBN: 978-0-387-96516-1
Verlag: Springer

Buch, Englisch, 132 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 230 g

Reihe: Universitext

ISBN: 978-0-387-96516-1
Verlag: Springer


At the end of the typical one quarter course on power series the students lack the means to decide 2 whether 1/(1+x ) has an expansion around any point ~ 0, or the tangent has an expansion anywhere and the means to evaluate and predict errors. In using power series for computation the main problems are: 1) To predict a priori the number N of terms needed to do the computation with a specified accuracy; and 2) To find the coefficients aO, •.• ,a • N These are the problems addressed in the book. Typical computations envisioned are: -6 calculate with error ~ 10 the integrals If/2 J (If/2-x)tan x dx o or the solution to the differential equation 2 y"+(sin x)Y'+x y = 0, y(O) = 0, y'(O) 1, on the interval 0 ~ x ~ 1. This computational point of view may seem narrow, but, in fact, such computations require the understa- ing and use of many of the important theorems of ele­ mentary analytic function theory: Cauchy's Integral Theorem, Cauchy's Inequalities, Unique Continuation, Analytic Continuation and the Monodromy Theorem, etc. The computations provide an effective motivation for learning the theorems and a sound basis for understa- ing them. To other scientists the rationale for the vi computational point of view might be the need for ef- cient accurate calculation; to mathematicians it is the motivation for learning theorems and the practice with inequalities, ~'s, o's, and N's.

Smith Power Series from a Computational Point of View jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Taylor Polynomials.- 1. Taylor Polynomials.- 2. Exponentials, Sines, and Cosines.- 3. The Geometric Sum.- 4. Combinations of Taylor Polynomials.- 5. Complex Taylor Polynomials.- Problems.- 2. Sequences and Series.- 1. Sequences of Real Numbers.- 2. Sequences of Complex Numbers and Vectors.- 3. Series of Real and Complex Numbers.- 4. Picard’s Theorem on Differential Equations.- 5. Power Series.- 6. Analytic Functions.- 7. Preview.- Problems.- 3. Power Series and Complex Differentiability.- 1. Paths in the Complex Plane C.- 2. Path Integrals.- 3. Cauchy’s Integral Theorem.- 4. Cauchy’s Integral Formula and Inequalities.- Problems.- 4. Local Analytic Functions.- 1. Logarithms.- 2. Local Solutions to Analytic Equations.- 3. Analytic Linear Differential Equations.- Problems.- 5. Analytic Continuation.- 1. Analytic Continuation Along Paths.- 2. The Monodromy Theorem.- 3. Cauchy’s Integral Formula and Theorem.- Problems.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.