E-Book, Englisch, 430 Seiten, Web PDF
Smith Internal Friction and Ultrasonic Attenuation in Solids
1. Auflage 2017
ISBN: 978-1-4831-4859-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the Third European Conference University of Manchester, England, 18-20 July 1980
E-Book, Englisch, 430 Seiten, Web PDF
ISBN: 978-1-4831-4859-5
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Internal Friction and Ultrasonic Attenuation in Solids contains the proceedings of the Third European Conference on Internal Friction and Ultrasonic Attenuation in Solids, held at the University of Manchester in England on July 18-20, 1980. The papers explore the principles of internal friction and ultrasonic attenuation in solids such as pure metals and their alloys, ceramics, glasses, and polymers. Structural features such as point defects, dislocations, interfaces, and second phases in solids are discussed, together with the processes by which these features contribute to energy dissipation. Topics covered range from point defect interactions to the establishment of high damping capacity materials for absorption of noise and vibration. This book is comprised of 65 chapters and begins with a brief review of the internal friction peaks observed in face-centered cubic, body-centered cubic, and hexagonal metals due to dislocation relaxation processes. Subsequent chapters focus on the internal friction of cold-worked single crystals of high-purity copper; evidence of Peierls Nabarro stress from microdeformation and attenuation experiments; effects of cyclic deformation and irradiation at low temperature on the internal friction of pure aluminum; and internal friction of high-purity magnesium after plastic deformation. The peaking effect in copper and silver is also analyzed, along with Zener relaxation and dislocation damping. The final chapter is devoted to anelastic behavior of ice at low temperature due to quenched point defects. This monograph will be a valuable resource for metallurgists, physicists, and mechanical engineers.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Internal Friction and Ultrasonic Attenuation in Solids;4
3;Copyright Page;5
4;Table of Contents;8
5;Preface;14
6;Part 1: Dislocation Damping 1;16
6.1;Chapter 1. Dislocation Relaxation Peaks;18
6.1.1;ABSTRACT;18
6.1.2;KEYWORDS;18
6.1.3;INTRODUCTION;18
6.1.4;THE BORDONI PEAK;18
6.1.5;OTHER PEAKS IN FCC METALS;19
6.1.6;PEAKS IN BCC AND HEXAGONAL METALS;19
6.1.7;REFERENCES;20
6.2;Chapter 2. The Bordoni Peak in Copper Single Crystals at Kilohertz Frequencies;22
6.2.1;ABSTRACT;22
6.2.2;KEYWORDS;22
6.2.3;INTRODUCTION;22
6.2.4;EXPERIMENTAL;22
6.2.5;RESULTS;23
6.2.6;DISCUSSION;25
6.2.7;REFERENCES;26
6.3;Chapter 3. Evidence of Peierls Nabarro Stress by Microdeformation and Attenuation Experiments;28
6.3.1;ABSTRACT;28
6.3.2;KEYWORDS;28
6.3.3;INTRODUCTION;28
6.3.4;EXPERIMENTAL RESULTS;28
6.3.5;DISCUSSION;31
6.3.6;ACKNOWLEDGMENT;33
6.3.7;REFERENCES;33
6.4;Chapter 4. Dislocation Internal Friction Peaks in Body-Centred Cubic Metals;34
6.4.1;ABSTRACT;34
6.4.2;KEYWORDS;34
6.4.3;INTRODUCTION;34
6.4.4;ON THE Y RELATION IN TANTALUM;35
6.4.5;THE a AND d RELAXATION IN NIOBIUM;37
6.4.6;ACKNOWLEDGEMENTS;39
6.4.7;REFERENCES;39
6.5;Chapter 5. The a-Maximum in Ta Investigated in the 1Hz-Frequency Range1;40
6.5.1;ABSTRACT;40
6.5.2;KEYWORDS;40
6.5.3;INTRODUCTION;40
6.5.4;EXPERIMENTAL PROCEDURE;41
6.5.5;EXPERIMENTAL RESULTS;41
6.5.6;DISCUSSION;43
6.5.7;REFERENCES;45
6.5.8;ACKNOWLEDGEMENT.;45
6.6;Chapter 6. Study for Observation Conditions for a and . Relaxation in Niobium;46
6.6.1;ABSTRACT;46
6.6.2;KEYWORDS;46
6.6.3;INTRODUCTION;46
6.6.4;EXPERIMENTAL PROCEDURE;47
6.6.5;EXPERIMENTAL RESULTS;47
6.6.6;DISCUSSION;48
6.6.7;CONCLUSION;50
6.6.8;REFERENCES;50
6.7;Chapter 7. Oscillation Amplitude Dependence of Internal Friction Peaks a, ., ßa and ß. in Iron;52
6.7.1;ABSTRACT;52
6.7.2;KEYWORDS;52
6.7.3;INTRODUCTION;52
6.7.4;EXPERIMENTAL TECHNIQUES;52
6.7.5;EXPERIMENTAL RESULTS;53
6.7.6;DISCUSSION;55
6.7.7;CONCLUSION;55
6.7.8;ACKNOWLEDGEMENTS;55
6.7.9;REFERENCES;55
6.8;Chapter 8. The a and ß1 Peaks in Deformed and/or Irradiated Pure Iron;58
6.8.1;ABSTRACT;58
6.8.2;KEYWORDS;58
6.8.3;INTRODUCTION;58
6.8.4;EXPERIMENTAL TECHNIQUES;58
6.8.5;EXPERIMENTAL RESULTS;59
6.8.6;DISCUSSION;60
6.8.7;CONCLUSION;62
6.8.8;ACKNOWLEDGEMENTS;62
6.8.9;REFERENCES;62
6.9;Chapter 9. Dislocation Relaxation Peaks in Pure and Doped Iron;64
6.9.1;ABSTRACT;64
6.9.2;INTRODUCTION;64
6.9.3;EXPERIMENTAL PROCEDURE;65
6.9.4;EXPERIMENTAL RESULTS;65
6.9.5;DISCUSSION;68
6.9.6;REFERENCES;69
6.10;Chapter 10. An Analysis of the a Peak in Niobium and Vanadium by Means of the Schoeck Theory;70
6.10.1;ABSTRACT;70
6.10.2;KEYWORDS;70
6.10.3;INTRODUCTION;70
6.10.4;EXPERIMENTAL;71
6.10.5;DISCUSSION;73
6.10.6;REFERENCES;75
6.11;Chapter 11. Study of Dislocation Mobility by Coupling of Low and High Frequency Applied Stresses;76
6.11.1;ABSTRACT;76
6.11.2;KEYWORDS;76
6.11.3;INTRODUCTION;76
6.11.4;EXPERIMENTAL RESULTS;77
6.11.5;CONCLUSION;81
6.11.6;REFERENCES;81
6.12;Chapter 12. Effects of Cyclic Deformation and Irradiation at Low Temperature on the Internal Friction of Pure Aluminium;82
6.12.1;ABSTRACT;82
6.12.2;KEYWORDS;82
6.12.3;INTRODUCTION;82
6.12.4;MODEL;83
6.12.5;DISCUSSION;84
6.12.6;IRRADIATIONS;85
6.12.7;REFERENCES;87
6.13;Chapter 13. Modulus Effect and Internal Friction in Cold Worked Copper and Some Copper Based Solid Solutions;88
6.13.1;EXPERIMENTAL METHOD AND RESULTS;88
6.13.2;CONCLUSIONS;92
6.13.3;REFERENCES;92
6.14;Chapter 14. Influence of the Sample Pre-Treatment upon the Cold-Work Effects of Internal Friction in Copper;94
6.14.1;ABSTRACT;94
6.14.2;INTRODUCTION;94
6.14.3;EXPERIMENTAL TECHNIQUE;94
6.14.4;EXPERIMENTAL RESULTS;95
6.14.5;DISCUSSION;97
6.14.6;REFERENCES;99
6.15;Chapter 15. Internal Friction of High Purity Magnesium after Plastic Deformation;100
6.15.1;ABSTRACT;100
6.15.2;KEYWORDS;100
6.15.3;INTRODUCTION;100
6.15.4;EXPERIMENTAL RESULTS;101
6.15.5;AKNOWLEDGMENTS;104
6.15.6;REFERENCES;104
6.16;Chapter 16. Internal Friction in Zr after Deformation;106
6.16.1;ABSTRACT;106
6.16.2;KEYWORDS;106
6.16.3;INTRODUCTION;106
6.16.4;EXPERIMENTAL PROCEDURE;106
6.16.5;DISCUSSION;110
6.16.6;REFERENCES;111
6.16.7;ACKNOWLEDGEMENT;111
6.17;Chapter 17. Characterization of the Peaking Effect in Copper and Silver;112
6.17.1;ABSTRACT;112
6.17.2;KEYWORDS;112
6.17.3;INTRODUCTION;112
6.17.4;EXPERIMENTAL TECHNIQUES;113
6.17.5;EXPERIMENTAL RESULTS;113
6.17.6;DISCUSSION;116
6.17.7;REFERENCES;117
6.18;Chapter 18. A New Damping Model for the "Peaking Effect";118
6.18.1;ABSTRACT;118
6.18.2;KEYWORDS;118
6.18.3;INTRODUCTION;118
6.18.4;SYNTHESIS OF EXPERIMENTAL RESULTS;119
6.18.5;MODEL;120
6.18.6;CONCLUSION;122
6.18.7;REFERENCES;123
6.19;Chapter 19. Interpretation of the 'Peaking Effect';124
6.19.1;ABSTRACT;124
6.19.2;KEYWORDS;124
6.19.3;INTRODUCTION;124
6.19.4;QUALITATIVE DESCRIPTION OF THE MODEL;125
6.19.5;RATE-EQUATION TREATMENT OF THE PINNING-UNPINNING KINETICS;125
6.19.6;PREDICTION OF A PEAKING EFFECT WITHIN THE VIBRATING-STRING APPROXIMATION;127
6.19.7;DISCUSSION AND COMPARISON WITH EXPERIMENTS;128
6.19.8;ACKNOWLEDGMENT;128
6.19.9;REFERENCES;129
6.20;Chapter 20. A Model of the Internal Friction Observedin Crystalline Solids in the Pre-Plastic Region at Low Frequencies;130
6.20.1;ABSTRACT;130
6.20.2;KEYWORDS;130
6.20.3;INTRODUCTION;130
6.20.4;THE MODEL;131
6.20.5;BOLTZMANN SUPERPOSITION;133
6.20.6;DISCUSSION AND CONCLUSIONS;134
6.20.7;REFERENCES;134
7;Part 2: Zener Relaxation;136
7.1;Chapter 21. The Zener Relaxation: A Convenient Tool to Study Vacancy Sources and Sinks in a Metal Lattice;138
7.1.1;ABSTRACT;138
7.1.2;KEYWORDS;138
7.1.3;INTRODUCTION;138
7.1.4;DESCRIPTION OF EQUILIBRATION KINETICS;139
7.1.5;GENERAL CONSIDERATIONS ON ZENER RELAXATION METHODS;140
7.1.6;RESISTOMETRIC AND ANELASTIC APPROACHES : A COMPARATIVE ANALYSIS;141
7.1.7;ANELASTIC STUDIES IN AgZn SOLID SOLUTIONS;143
7.1.8;REFERENCES;144
7.2;Chapter 22. The Production Rate of Point Defects by Irradiation: A Comparative Study in a Ag-24 at % Zn Alloy, for .-Rays, Fast Electrons and Reactor Neutrons;146
7.2.1;ABSTRACT;146
7.2.2;KEYWORDS;146
7.2.3;INTRODUCTION;146
7.2.4;EXPERIMENTAL;147
7.2.5;RESULTS AND THEIR INTERPRETATION;147
7.2.6;CONCLUDING REMARKS;152
7.2.7;REFERENCES;152
7.3;Chapter 23. The Migration Properties of Self-Interstitials in Concentrated a-AgZn Solid Solutions;154
7.3.1;ABSTRACT;154
7.3.2;KEYWORDS;154
7.3.3;INTRODUCTION;154
7.3.4;EXPERIMENTAL;154
7.3.5;BACKGROUND;155
7.3.6;RESULTS;155
7.3.7;CONCLUDING COMMENTS;157
7.3.8;REFERENCES;157
7.4;Chapter 24. Stress-Induced and Short Range Ordering:A Dual Approach to Vacancy Properties.Application to a Cu-30 at.% Zn Alloy;158
7.4.1;ABSTRACT;158
7.4.2;KEYWORDS;158
7.4.3;INTRODUCTION;158
7.4.4;EXPERIMENTAL;159
7.4.5;STRAIN RELAXATION RESULTS;159
7.4.6;RESISTIVITY RESULTS;160
7.4.7;COMPARISON OF ANELASTICITY AND RESISTIVITY CURVES;161
7.4.8;APPLICATION TO THE DETERMINATION OF ACTIVATION ENERGIES;162
7.4.9;CONCLUSION;163
7.4.10;REFERENCES;163
7.5;Chapter 25. The Zener Relaxation in Ternary Cu-Ni-Zn Alloys;164
7.5.1;ABSTRACT;164
7.5.2;KEYWORDS;164
7.5.3;INTRODUCTION;164
7.5.4;EXPERIMENTAL TECHNIQUE;165
7.5.5;EXPERIMENTAL RESULTS;165
7.5.6;COMPUTATIONAL RESULTS OF THE PHASE DIAGRAM OF CuNiZn;166
7.5.7;DISCUSSION AND CONCLUSIONS;169
7.5.8;ACKNOWLEDGMENTS;169
7.5.9;REFERENCES;169
8;Part 3: Dislocation Damping 2;170
8.1;Chapter 26. Low-Frequency "Amplitude Peaks" in the Internal Friction Associated with theInteraction of Substitutional Solute Atom swith Dislocations in Aluminium Alloys;172
8.1.1;ABSTRACT;172
8.1.2;KEYWORDS;172
8.1.3;INTRODUCTION;172
8.1.4;FURTHER CONFIRMATION OF THE AMPLITUDE PEAK, AGING PEAK, AND TEMPERATURE PEAK;175
8.1.5;WHY A DISLOCATION-KINK CONCEPT ISNECESSARY;176
8.1.6;ACKNOWLEDGEMENT;180
8.1.7;REFERENCES;180
8.2;Chapter 27. New Study of Interactions Between Dislocations and Solute Atoms in Aluminium Through Ultrasonic Attenuation Change Induced by Bias Stress;182
8.2.1;ABSTRACT;182
8.2.2;KEYWORDS;182
8.2.3;INTRODUCTION;182
8.2.4;EXPERIMENTAL PROCEDURE;182
8.2.5;MAIN RESULTS;183
8.2.6;ACKNOWLEDGEMENT;187
8.2.7;REFERENCE;187
8.3;Chapter 28. Internal Friction and Dislocation - Solute Interactions in Titanium;188
8.3.1;ABSTRACT;188
8.3.2;KEYWORDS;188
8.3.3;INTRODUCTION;188
8.3.4;EXPERIMENTAL PROCEDURE;189
8.3.5;RESULTS;189
8.3.6;DISCUSSION;191
8.3.7;ACKNOWLEDGEMENTS;194
8.3.8;REFERENCES;194
8.4;Chapter 29. Influence of Doping and Deformation on the Internal Friction of Electron Irradiated Iron;196
8.4.1;ABSTRACT;196
8.4.2;KEYWORDS;196
8.4.3;INTRODUCTION;196
8.4.4;EXPERIMENTAL;197
8.4.5;RESULTS;197
8.4.6;DISCUSSION;199
8.4.7;REFERENCES;201
8.5;Chapter 30. Amplitude Dependent Internal Friction and Modulus Effect in Copper Single Crystals;202
8.5.1;EXPERIMENTAL RESULTS;202
8.5.2;DISCUSSION;205
8.5.3;References;207
8.6;Chapter 31. Determination of Threshold Energies by Dislocation Pinning Experiments in Copper and Silver;208
8.6.1;ABSTRACT;208
8.6.2;KEYWORDS;208
8.6.3;INTRODUCTION;208
8.6.4;EXPERIMENTAL TECHNICS;209
8.6.5;RESULTS;209
8.6.6;CONCLUSION;213
8.6.7;REFERENCES;213
8.7;Chapter 32. Some Effects of Electron Irradiation on the Internal Friction of High Purity Molybdenum;214
8.7.1;ABSTRACT;214
8.7.2;KEYWORDS;214
8.7.3;INTRODUCTION;214
8.7.4;EXPERIMENTAL;215
8.7.5;RESULTS;216
8.7.6;DISCUSSION;218
8.7.7;ACKNOWLEDGEMENTS;219
8.7.8;REFERENCES;219
8.8;Chapter 33. Relaxation Phenomena Connected with the Stage III in Irradiated Iron;220
8.8.1;ABSTRACT;220
8.8.2;KEYWORDS;220
8.8.3;INTRODUCTION;220
8.8.4;RESULTS AND INTERPRETATION;221
8.8.5;CONCLUSION;224
8.8.6;ACKNOWLEDGEMENTS;224
8.8.7;REFERENCES;224
8.9;Chapter 34. Transient Increase of the Magnetomechanical Damping Induced by Structural Defects in Iron;226
8.9.1;ABSTRACT;226
8.9.2;INTRODUCTION;226
8.9.3;EXPERIMENTAL METHODS;226
8.9.4;STRAINING EFFECT;226
8.9.5;EFFECT OF PRECIPITATED CARBIDES;227
8.9.6;CONCLUSION;230
8.9.7;REFERENCES;230
8.10;Chapter 35. Influence of d.c. Magnetic Field over Magnetomechanical Damping of High Purity Iron;232
8.10.1;ABSTRACT;232
8.10.2;KEYWORDS;232
8.10.3;INTRODUCTION;232
8.10.4;EXPERIMENTAL PROCEDURES;232
8.10.5;EXPERIMENTAL RESULTS;233
8.10.6;INTERPRETATION. DISCUSSION;234
8.10.7;CONCLUSION;236
8.10.8;REFERENCES;237
8.11;Chapter 36. Different Mechanisms of Anelastic and Ferromagnetic Relaxation Due to Defectsin Neutron Irradiated Iron;238
8.11.1;ABSTRACT;238
8.11.2;KEYWORDS;238
8.11.3;INTRODUCTION;238
8.11.4;RESULTS;239
8.11.5;DISCUSSION;242
8.11.6;ACKNOWLEDGEMENT;243
8.11.7;REFERENCES;243
8.12;Chapter 37. Hydrogen-Dislocation Interaction and Hydrogen-Reordering Processes in Palladium/Platinum Alloys;244
8.12.1;ABSTRACT;244
8.12.2;KEYWORDS;244
8.12.3;INTRODUCTION;244
8.12.4;EXPERIMENTAL;245
8.12.5;RESULTS;245
8.12.6;DISCUSSION;247
8.12.7;ACKNOWLEDGEMENTS;248
8.12.8;REFERENCES;249
9;Part 4: Polymers;250
9.1;Chapter 38. Dynamics of Polymer Networks at High Ultrasonic Frequencies;252
9.1.1;ABSTRACT;252
9.1.2;KEYWORDS;252
9.1.3;INTRODUCTION;252
9.1.4;EXPERIMENTAL;252
9.1.5;RESULTS AND DISCUSSION;253
9.1.6;ACKNOWLEDGEMENTS;256
9.1.7;REFERENCES;257
9.2;Chapter 39. Study of the Glass Transition on Polymers by Isothermal Internal Friction Measurements;258
9.2.1;ABSTRACT;258
9.2.2;INTRODUCTION;258
9.2.3;EXPERIMENTAL METHOD;258
9.2.4;EXPERIMENTAL RESULTS;259
9.2.5;REFERENCES;262
9.3;Chapter 40. A Spectroscopic Method for Measurement of the Ultrasonic Properties of Polymers —Method and Limitations;264
9.3.1;ABSTRACT;264
9.3.2;KEYWORDS;264
9.3.3;INTRODUCTION;264
9.3.4;THE PRINCIPLE OF THE TECHNIQUE;265
9.3.5;PRACTICAL IMPLEMENTATION;266
9.3.6;LIMITATIONS;266
9.3.7;CONCLUSIONS;268
9.3.8;REFERENCES;269
9.4;Chapter 41. The Evaluation of Molecular Size Distribution Parameters for Linear Chain Polymers by Means of Relaxation Experiments;270
9.4.1;ABSTRACT;270
9.4.2;KEYWORDS;270
9.4.3;INTRODUCTION;270
9.4.4;CORRELATION OF RELAXATION STRENGTH AND MOLECULAR SIZE DISTRIBUTION;271
9.4.5;DISCUSSION;273
9.4.6;CONCLUSIONS;275
9.4.7;ACKNOWLEDGEMENTS;275
9.4.8;REFERENCES;275
10;Part 5: Phase Transformations,Interfaces and High Temperature Damping;276
10.1;Chapter 42. Effect of the Measurement Amplitude on the Internal Friction in Ni Ti and Ni Ti Cu Alloys During the Martensitic Transformation;278
10.1.1;ABSTRACT;278
10.1.2;KEYWORDS;278
10.1.3;INTRODUCTION;278
10.1.4;EXPERIMENTAL PROCEDURE;279
10.1.5;EXPERIMENTAL RESULTS;279
10.1.6;DISCUSSION;281
10.1.7;REFERENCES;283
10.2;Chapter 43. Internal Friction Measurements During Martensitic Transformation in Cu Zn AI Alloys at kHz Frequencies;284
10.2.1;ABSTRACT;284
10.2.2;KEYWORDS;284
10.2.3;INTRODUCTION;284
10.2.4;EXPERIMENTAL PROCEDURE;285
10.2.5;RESULTS;285
10.2.6;DISCUSSION;286
10.2.7;CONCLUSION;288
10.2.8;REFERENCES;288
10.3;Chapter 44. Amplitude and Temperature Dependence of Internal Friction in Cu-Zn-Al Alloy Measured During Very Low or Null Temperature Rate;290
10.3.1;ABSTRACT;290
10.3.2;KEYWORDS;290
10.3.3;INTRODUCTION;290
10.3.4;EXPERIMENTAL CONDITIONS;290
10.3.5;RESULTS;291
10.3.6;DISCUSSION;292
10.3.7;CONCLUSION;295
10.3.8;REFERENCES;295
10.4;Chapter 45. Internal Friction Spectra Modifications Related to Carbon in Acicular Martensite;296
10.4.1;ABSTRACT;296
10.4.2;KEYWORDS;296
10.4.3;INTRODUCTION;296
10.4.4;EXPERIMENTAL PROCEDURE;296
10.4.5;RESULTS AND DISCUSSION;297
10.4.6;REFERENCES;301
10.5;Chapter 46. Isothermal Transformtion of Retained Austenite in Fe Ni C Alloys;302
10.5.1;ABSTRACT;302
10.5.2;KEYWORDS;302
10.5.3;INTRODUCTION;302
10.5.4;EXPERIMENTAL PROCEDURE;302
10.5.5;EXPERIMENTAL RESULTS;303
10.5.6;DISCUSSION;306
10.5.7;REFERENCES;306
10.6;Chapter 47. High Temperature and Low Frequency Damping of Aluminium Single Crystals;308
10.6.1;ABSTRACT;308
10.6.2;INTRODUCTION;308
10.6.3;EXPERIMENTAL METHOD;309
10.6.4;EXPERIMENTAL RESULTS;309
10.6.5;CONCLUDING REMARKS;313
10.6.6;REFERENCES;314
10.7;Chapter 48. High Temperature Internal Friction of AI;316
10.7.1;ABSTRACT;316
10.7.2;KEYWORDS;316
10.7.3;INTRODUCTION;316
10.7.4;EXPERIMENTAL;317
10.7.5;RESULTS;317
10.7.6;DISCUSSION;318
10.7.7;CONCLUSIONS;320
10.7.8;ACKNOWLEDGEMENTS;320
10.7.9;REFERENCES;320
10.8;Chapter 49. The Influence of Plastic Deformation on the Low Temperature Grain Boundary Peak in Copper;322
10.8.1;KEYWORDS;322
10.8.2;INTRODUCTION;322
10.8.3;EXPERIMENTAL;323
10.8.4;RESULTS;323
10.8.5;DISCUSSION;324
10.8.6;CONCLUSIONS;325
10.8.7;REFERENCES;325
10.9;Chapter 50. Internal Friction Associated with Precipitation in Al-Ag Alloys;326
10.9.1;ABSTRACT;326
10.9.2;KEYWORDS;326
10.9.3;INTRODUCTION;326
10.9.4;EXPERIMENTAL RESULTS;327
10.9.5;CONCLUSIONS;330
10.9.6;REFERENCES;331
10.10;Chapter 51. Internal Friction in Aged Cu-Si Alloys;332
10.10.1;ABSTRACT;332
10.10.2;KEYWORDS;332
10.10.3;INTRODUCTION;332
10.10.4;EXPERIMENTAL PROCEDURE;333
10.10.5;RESULTS;333
10.10.6;DISCUSSION;333
10.10.7;CONCLUSIONS;335
10.10.8;REFERENCES;335
10.11;Chapter 52. Anelastic Effects in AI 4 wt % Cu Alloy After Ageing;336
10.11.1;ABSTRACT;336
10.11.2;KEYWORDS;336
10.11.3;INTRODUCTION;336
10.11.4;EXPERIMENTAL;337
10.11.5;RESULTS;337
10.11.6;CONCLUSIONS;339
10.11.7;ACKNOWLEDGEMENT;339
10.11.8;REFERENCES;339
10.12;Chapter 53. Anelastic Effects Due to Precipitation and Recrystallization in Aluminium Manganese Alloys;342
10.12.1;ABSTRACT;342
10.12.2;KEYWORDS;342
10.12.3;INTRODUCTION;342
10.12.4;EXPERIMENTAL PROCEDURE;342
10.12.5;RESULTS AND DISCUSSION;343
10.12.6;CONCLUSION;346
10.12.7;REFERENCES;346
10.13;Chapter 54. Internal Friction in Magnesium-Indium Alloys;348
10.13.1;ABSTRACT;348
10.13.2;KEYWORDS;348
10.13.3;INTRODUCTION;348
10.13.4;SPECIMEN PREPARATION AND EXPERIMENTAL TECHNIQUE;348
10.13.5;RESULTS;349
10.13.6;DISCUSSION;349
10.13.7;CONCLUSIONS;353
10.13.8;ACKNOWLEDGEMENTS;353
10.13.9;REFERENCES;353
10.14;Chapter 55. Influence of the Carbon Content on theInternal Friction of lron-17% Chromium Alloys;358
10.14.1;ABSTRACT;358
10.14.2;KEYWORDS;358
10.14.3;INTRODUCTION;358
10.14.4;EXPERIMENTAL PROCEDURE;358
10.14.5;EXPERIMENTAL RESULTS;358
10.14.6;DISCUSSION;360
10.14.7;CONCLUSION;361
10.14.8;REFERENCES;361
10.14.9;FIGURES CAPTIONS;362
10.15;Chapter 56. Influence of Titanium on the Internal Friction Due to Interstitials O, N, C in Niobium;364
10.15.1;ABSTRACT;364
10.15.2;KEYWORDS;364
10.15.3;INTRODUCTION;364
10.15.4;MATERIAL AND EXPERIMENTAL PROCEDURE;364
10.15.5;RESULTS;365
10.15.6;DISCUSSION;368
10.15.7;CONCLUSION;369
10.15.8;REFERENCES;369
10.16;Chapter 57. Internal Friction in Ti-AI-0 Alloys;370
10.16.1;ABSTRACT;370
10.16.2;KEYWORDS;370
10.16.3;INTRODUCTION;370
10.16.4;SPECIMEN PREPARATION AND CHARACTERIZATION;371
10.16.5;RESULTS;372
10.16.6;DISCUSSION;374
10.16.7;REFERENCES;374
11;Part 6: Glasses and Ceramics;376
11.1;Chapter 58. Ultrasonic Attenuation in Amorphous Arsenic and Red Phosphorus;378
11.1.1;ABSTRACT;378
11.1.2;KEYWORDS;378
11.1.3;INTRODUCTION;378
11.1.4;EXPERIMENT AND RESULTS;380
11.1.5;DISCUSSION;382
11.1.6;ACKNOWLEDGEMENTS;383
11.1.7;REFERENCES;383
11.2;Chapter 59. Internal Friction Peaks in Metallic Glasses;386
11.2.1;ABSTRACT;386
11.2.2;KEYWORDS;386
11.2.3;INTRODUCTION;386
11.2.4;PROCEDURE AND PREPARATION OF SAMPLES;387
11.2.5;RESULTS;387
11.2.6;DISCUSSION;390
11.2.7;ACKNOWLEDGEMENTS AND REFERENCES;391
11.3;Chapter 60. Internal Friction of Sodium - Iron -Phosphate Glasses;392
11.3.1;ABSTRACT;392
11.3.2;KEYWORDS;392
11.3.3;INTRODUCTION;392
11.3.4;EXPERIMENTAL;393
11.3.5;RESULTS AND DISCUSSION;393
11.3.6;ACKNOWLEDGEMENT;396
11.3.7;REFERENCES;396
11.4;Chapter 61. An Ultrasonic Study of Ion Diffusion in the Superionic Conductor ß Alumina;398
11.4.1;ABSTRACT;398
11.4.2;KEYWORDS;398
11.4.3;INTRODUCTION;398
11.4.4;MEASUREMENTS;398
11.4.5;ANALYSIS;400
11.4.6;POLYCRYSTALLINE ß-ALUMINA;402
11.4.7;REFERENCES;402
11.5;Chapter 62. Anelastic Phenomena in NonStoichiometric Spinels and Transition Aluminas;404
11.5.1;ABSTRACT;404
11.5.2;KEYWORDS;404
11.5.3;INTRODUCTION;404
11.5.4;EXPERIMENTAL;404
11.5.5;CONCLUSION;408
11.5.6;REFERENCES;408
11.6;Chapter 63. Internal Friction Recovery of Plastically Deformed MgO;410
11.6.1;ABSTRACT;410
11.6.2;KEYWORDS;410
11.6.3;INTRODUCTION;410
11.6.4;EXPERIMENTAL RESULTS;410
11.6.5;ANALYSIS OF THE RESULTS;412
11.6.6;DISCUSSION;414
11.6.7;REFERENCES;414
11.7;Chapter 64. High Temperture Damping in Si3N4 Depending on the Sintering Conditions;416
11.7.1;ABSTRACT;416
11.7.2;KEYWORDS;416
11.7.3;INTRODUCTION;416
11.7.4;EXPERIMENTAL;417
11.7.5;RESULTS;418
11.7.6;DISCUSSION;419
11.7.7;CONCLUSIONS;420
11.7.8;ACKNOWLEDGEMENTS;420
11.7.9;REFERENCES;420
11.8;Chapter 65. Anelastic Behaviour of Ice at Low Temperature Due to Quenched Point Defects;422
11.8.1;ABSTRACT;422
11.8.2;KEYWORDS;422
11.8.3;INTRODUCTION;422
11.8.4;EXPERIMENTAL PROCEDURE;423
11.8.5;EXPERIMENTAL RESULTS;423
11.8.6;DISCUSSION;423
11.8.7;CONSEQUENCES AND APPLICATIONS;425
11.8.8;ACKNOWLEDGEMENT;427
11.8.9;REFERENCES;427
12;Author Index;428
13;Subject Index;430




