Buch, Englisch, 134 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 395 g
Buch, Englisch, 134 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 395 g
Reihe: Springer Proceedings in Physics
ISBN: 978-3-030-30895-7
Verlag: Springer International Publishing
The book approaches formal ontology in the original sense put forward by the philosopher Edmund Husserl, namely as a science that deals with entities that can be exemplified in all spheres and domains of reality. It is a dynamic, processual, and non-substantial ontology in which all entities can be treated as transformations, and in which objects are merely the sources and aims of these transformations.
Thus, in a rather surprising way, when employed as a formal ontology, category theory can unite seemingly disparate disciplines in contemporary science and the humanities, such as physics, mathematics and philosophy, but also computer and complex systems science.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Quantenphysik
- Mathematik | Informatik Mathematik Algebra Homologische Algebra
- Geisteswissenschaften Philosophie Philosophie der Mathematik, Philosophie der Physik
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
- Mathematik | Informatik Mathematik Mathematik Allgemein Philosophie der Mathematik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
Weitere Infos & Material
Introduction.- Why Categories?.- Category Theory and Philosophy.- Comments on: Category Theory and Philosophy by Zbigniew Krol.- Are There Category-Theoretical Explanations ofPhysical Phenomena?.- The Application of Category Theory to Epistemic and Poietic Processes.- Asymmetry of Cantorian Mathematics from a Categorial Standpoint: Is It Related to the Direction of Time?.- Extending List’s Levels.- From quantum-mechanical lattice of projections to smooth structure of R4.- Beyond the Space-Time Boundary.- Aspects of Perturbative Quantum Gravity on Synthetic Spacetimes.- Category Theory as a Foundationfor the Concept Analysis of Complex Systems and Time Series.