Skillicorn | Understanding Complex Datasets | E-Book | sack.de
E-Book

Skillicorn Understanding Complex Datasets

Data Mining with Matrix Decompositions
Erscheinungsjahr 2007
ISBN: 978-1-58488-833-8
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Data Mining with Matrix Decompositions

E-Book, Englisch, 260 Seiten

Reihe: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series

ISBN: 978-1-58488-833-8
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Making obscure knowledge about matrix decompositions widely available, Understanding Complex Datasets: Data Mining with Matrix Decompositions discusses the most common matrix decompositions and shows how they can be used to analyze large datasets in a broad range of application areas. Without having to understand every mathematical detail, the book helps you determine which matrix is appropriate for your dataset and what the results mean.

Explaining the effectiveness of matrices as data analysis tools, the book illustrates the ability of matrix decompositions to provide more powerful analyses and to produce cleaner data than more mainstream techniques. The author explores the deep connections between matrix decompositions and structures within graphs, relating the PageRank algorithm of Google's search engine to singular value decomposition. He also covers dimensionality reduction, collaborative filtering, clustering, and spectral analysis. With numerous figures and examples, the book shows how matrix decompositions can be used to find documents on the Internet, look for deeply buried mineral deposits without drilling, explore the structure of proteins, detect suspicious emails or cell phone calls, and more.

Concentrating on data mining mechanics and applications, this resource helps you model large, complex datasets and investigate connections between standard data mining techniques and matrix decompositions.

Skillicorn Understanding Complex Datasets jetzt bestellen!

Zielgruppe


Computer scientists and researchers in mathematics, statistics, engineering, biomedicine, and the social sciences.


Autoren/Hrsg.


Weitere Infos & Material


DATA MINING
What Is Data Like?
Data Mining Techniques
Why Use Matrix Decompositions?

MATRIX DECOMPOSITIONS
Definition
Interpreting Decompositions
Applying Decompositions
Algorithm Issues

SINGULAR VALUE DECOMPOSITION (SVD)
Definition
Interpreting an SVD
Applying SVD
Algorithm Issues
Applications of SVD
Extensions

GRAPH ANALYSIS
Graphs versus Datasets
Adjacency Matrix
Eigenvalues and Eigenvectors
Connections to SVD
Google's PageRank
Overview of the Embedding Process
Datasets versus Graphs
Eigendecompositions
Clustering
Edge Prediction
Graph Substructures
The ATHENS System for Novel Knowledge Discovery
Bipartite Graphs

SEMIDISCRETE DECOMPOSITION (SDD)
Definition
Interpreting an SDD
Applying an SDD
Algorithm Issues
Extensions

USING SVD AND SDD TOGETHER
SVD Then SDD
Applications of SVD and SDD Together

INDEPENDENT COMPONENT ANALYSIS (ICA)
Definition
Interpreting an ICA
Applying an ICA
Algorithm Issues
Applications of ICA

NON-NEGATIVE MATRIX FACTORIZATION (NNMF)
Definition
Interpreting an NNMF
Applying an NNMF
Algorithm Issues
Applications of NNMF

TENSORS
The Tucker3 Tensor Decomposition
The CP Decomposition
Applications of Tensor Decompositions
Algorithmic Issues

CONCLUSION
APPENDIX: MATLAB SCRIPTS
BIBLIOGRAPHY
INDEX



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.