Skiadas | Advances in Data Analysis | Buch | 978-0-8176-4798-8 | sack.de

Buch, Englisch, 364 Seiten, Format (B × H): 186 mm x 267 mm, Gewicht: 1970 g

Reihe: Statistics for Industry and Technology

Skiadas

Advances in Data Analysis

Theory and Applications to Reliability and Inference, Data Mining, Bioinformatics, Lifetime Data, and Neural Networks

Buch, Englisch, 364 Seiten, Format (B × H): 186 mm x 267 mm, Gewicht: 1970 g

Reihe: Statistics for Industry and Technology

ISBN: 978-0-8176-4798-8
Verlag: Birkhauser Boston


An outgrowth of the 12 International Conference on Applied Stochastic Models and Data Analysis, this book is a collection of invited chapters presenting recent developments in the field of data analysis, with applications to reliability and inference, data mining, bioinformatics, lifetime data, and neural networks.

Emphasized throughout the volume are new methods with the potential for solving real-world problems in various areas, including data mining and text mining, information theory and statistical applications, asymptotic behaviour of stochastic processes and random fields, bioinformatics and Markov chains, life table data, survival analysis, and risk in household insurance, neural networks and self-organizing maps, parametric and nonparametric statistics, and statistical theory and methods.

is a useful reference for graduate students, researchers, and practitioners in statistics, mathematics, engineering, economics, social science, bioengineering, and bioscience.

Skiadas Advances in Data Analysis jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


I Data Mining and Text Mining.- Assessing the Stability of Supplementary Elements on Principal Axes Maps Through Bootstrap Resampling. Contribution to Interpretation in Textual Analysis.- A Doubly Projected Analysis for Lexical Tables.- Analysis of a Mixture of Closed and Open-Ended Questions in the Case of a Multilingual Survey.- Number of Frequent Patterns in Random Databases.- II Information Theory and Statistical Applications.- Measures of Divergence in Model Selection.- High Leverage Points and Outliers in Generalized Linear Models for Ordinal Data.- On a Minimization Problem Involving Divergences and Its Applications.- III Asymptotic Behaviour of Stochastic Processes and Random Fields.- Remarks on Stochastic Models Under Consideration.- New Invariance Principles for Critical Branching Process in Random Environment.- Gaussian Approximation for Multichannel Queueing Systems.- Stochastic Insurance Models, Their Optimality and Stability.- Central Limit Theorem for Random Fields and Applications.- A Berry #x2013; Esseen Type Estimate for Dependent Systems on Transitive Graphs.- Critical and Subcritical Branching Symmetric Random Walks on -Dimensional Lattices.- IV Bioinformatics and Markov Chains.- Finite Markov Chain Embedding for the Exact Distribution of Patterns in a Set of Random Sequences.- On the Convergence of the Discrete-Time Homogeneous Markov Chain.- V Life Table Data, Survival Analysis and Risk in Household Insurance.- Comparing the Gompertz-Type Models with a First Passage Time Density Model.- A Comparison of Recent Procedures in Weibull Mixture Testing.- Hierarchical Bayesian Modelling of Geographic Dependence of Risk in Household Insurance.- VI Neural Networks and Self-Organizing Maps.- The FCN Framework: Development and Applications.- On the Use of Self-Organising Maps to Analyse Spectral Data.- Neuro-Fuzzy Versus Traditional Models for Forecasting Wind Energy Production.- VII Parametric and Non-parametric Statistics.- Nonparametric Comparison of Several Sequential -out-of- Systems.- Adjusting -Values when Is Large in the Presence of Nuisance Parameters.- VIII Statistical Theory and Methods.- Fitting Pareto II Distributions on Firm Size: Statistical Methodology and Economic Puzzles.- Application of Extreme Value Theory to Economic Capital Estimation.- Multiresponse Robust Engineering: Industrial Experiment Parameter Estimation.- Inference for Binomial Change Point Data.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.