Skansi | Introduction to Deep Learning | Buch | 978-3-319-73003-5 | sack.de

Buch, Englisch, 191 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 324 g

Reihe: Undergraduate Topics in Computer Science

Skansi

Introduction to Deep Learning

From Logical Calculus to Artificial Intelligence
1. Auflage 2018
ISBN: 978-3-319-73003-5
Verlag: Springer International Publishing

From Logical Calculus to Artificial Intelligence

Buch, Englisch, 191 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 324 g

Reihe: Undergraduate Topics in Computer Science

ISBN: 978-3-319-73003-5
Verlag: Springer International Publishing


This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website.

Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism.

This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology.

Skansi Introduction to Deep Learning jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


From Logic to Cognitive Science.- Mathematical and Computational Prerequisites.- Machine Learning Basics.- Feed-forward Neural Networks.- Modifications and Extensions to a Feed-forward Neural Network.- Convolutional Neural Networks.- Recurrent Neural Networks.- Autoencoders.- Neural Language Models.- An Overview of Different Neural Network Architectures.- Conclusion.


Dr. Sandro Skansi is an Assistant Professor of Logic at the University of Zagreb and Lecturer in Data Science at University College Algebra, Zagreb, Croatia.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.