Sivanandam / Deepa | Introduction to Genetic Algorithms | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 453 Seiten

Sivanandam / Deepa Introduction to Genetic Algorithms


1. Auflage 2007
ISBN: 978-3-540-73190-0
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 453 Seiten

ISBN: 978-3-540-73190-0
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book offers a basic introduction to genetic algorithms. It provides a detailed explanation of genetic algorithm concepts and examines numerous genetic algorithm optimization problems. In addition, the book presents implementation of optimization problems using C and C++ as well as simulated solutions for genetic algorithm problems using MATLAB 7.0. It also includes application case studies on genetic algorithms in emerging fields.

Sivanandam / Deepa Introduction to Genetic Algorithms jetzt bestellen!

Weitere Infos & Material


1;Preface;5
2;About the Book;7
2.1;1 Organization of the Book;7
2.2;2 Salient Features of the Book;8
3;Acknowledgement;10
4;Contents;11
5;Evolutionary Computation;18
5.1;1.1 Introduction;18
5.2;1.2 The Historical Development of EC;19
5.2.1;1.2.1 Genetic Algorithms;19
5.2.2;1.2.2 Genetic Programming;20
5.2.3;1.2.3 Evolutionary Strategies;21
5.2.4;1.2.4 Evolutionary Programming;22
5.3;1.3 Features of Evolutionary Computation;22
5.3.1;1.3.1 Particulate Genes and Population Genetics;23
5.3.2;1.3.2 The Adaptive Code Book;24
5.3.3;1.3.3 The Genotype/Phenotype Dichotomy;25
5.4;1.4 Advantages of Evolutionary Computation;26
5.4.1;1.4.1 Conceptual Simplicity;27
5.4.2;1.4.2 Broad Applicability;27
5.4.3;1.4.3 Hybridization with Other Methods;28
5.4.4;1.4.4 Parallelism;28
5.4.5;1.4.5 Robust to Dynamic Changes;28
5.4.6;1.4.6 Solves Problems that have no Solutions;29
5.5;1.5 Applications of Evolutionary Computation;29
5.6;1.6 Summary;30
5.7;Review Questions;30
6;Genetic Algorithms;31
6.1;2.1 Introduction;31
6.2;2.2 Biological Background;32
6.2.1;2.2.1 The Cell;32
6.2.2;2.2.2 Chromosomes;32
6.2.3;2.2.3 Genetics;33
6.2.4;2.2.4 Reproduction;33
6.2.5;2.2.5 Natural Selection;35
6.3;2.3 What is Genetic Algorithm?;36
6.3.1;2.3.1 Search Space;36
6.3.2;2.3.2 Genetic Algorithms World;36
6.3.3;2.3.3 Evolution and Optimization;38
6.3.4;2.3.4 Evolution and Genetic Algorithms;39
6.4;2.4 Conventional Optimization and Search Techniques;40
6.4.1;2.4.1 Gradient-Based Local OptimizationMethod;41
6.4.2;2.4.2 Random Search;42
6.4.3;2.4.3 Stochastic Hill Climbing;43
6.4.4;2.4.4 Simulated Annealing;43
6.4.5;2.4.5 Symbolic Artificial Intelligence (AI);45
6.5;2.5 A Simple Genetic Algorithm;45
6.6;2.6 Comparison of Genetic Algorithm with Other Optimization Techniques;49
6.7;2.7 Advantages and Limitations of Genetic Algorithm;50
6.8;2.8 Applications of Genetic Algorithm;51
6.9;2.9 Summary;52
6.10;Review Questions;52
7;Terminologies and Operators of GA;54
7.1;3.1 Introduction;54
7.2;3.2 Key Elements;54
7.3;3.3 Individuals;54
7.4;3.4 Genes;55
7.5;3.5 Fitness;56
7.6;3.6 Populations;56
7.7;3.7 Data Structures;57
7.8;3.8 Search Strategies;58
7.9;3.9 Encoding;58
7.9.1;3.9.1 Binary Encoding;58
7.9.2;3.9.2 Octal Encoding;59
7.9.3;3.9.3 Hexadecimal Encoding;59
7.9.4;3.9.4 Permutation Encoding (Real Number Coding);59
7.9.5;3.9.5 Value Encoding;60
7.9.6;3.9.6 Tree Encoding;60
7.10;3.10 Breeding;61
7.10.1;3.10.1 Selection;61
7.10.2;3.10.2 Crossover (Recombination);65
7.10.3;3.10.3 Mutation;71
7.10.4;3.10.4 Replacement;72
7.11;3.11 Search Termination (Convergence Criteria);74
7.11.1;3.11.1 Best Individual;74
7.11.2;3.11.2 Worst individual;75
7.11.3;3.11.3 Sum of Fitness;75
7.11.4;3.11.4 Median Fitness;75
7.12;3.12 Why do Genetic AlgorithmsWork?;75
7.12.1;3.12.1 Building Block Hypothesis;76
7.12.2;3.12.2 A Macro-Mutation Hypothesis;77
7.12.3;3.12.3 An Adaptive Mutation Hypothesis;77
7.12.4;3.12.4 The Schema Theorem;78
7.12.5;3.12.5 Optimal Allocation of Trials;80
7.12.6;3.12.6 Implicit Parallelism;81
7.12.7;3.12.7 The No Free Lunch Theorem;83
7.13;3.13 Solution Evaluation;83
7.14;3.14 Search Refinement;84
7.15;3.15 Constraints;84
7.16;3.16 Fitness Scaling;85
7.16.1;3.16.1 Linear Scaling;85
7.16.2;3.16.2 Sigma Truncation;86
7.16.3;3.16.3 Power Law Scaling;87
7.17;3.17 Example Problems ;87
7.17.1;3.17.1 Maximizing a Function;87
7.17.2;3.17.2 Traveling Salesman Problem;91
7.18;3.18 Summary;93
7.19;Review Questions;95
7.20;Exercise Problems;96
8;Advanced Operators and Techniques in Genetic Algorithm;97
8.1;4.1 Introduction;97
8.2;4.2 Diploidy, Dominance and Abeyance;97
8.3;4.3 Multiploid;99
8.4;4.4 Inversion and Reordering;100
8.4.1;4.4.1 Partially Matched Crossover (PMX);102
8.4.2;4.4.2 Order Crossover (OX);102
8.4.3;4.4.3 Cycle Crossover (CX);103
8.5;4.5 Niche and Speciation;103
8.5.1;4.5.1 Niche and Speciation in Multimodal Problems;104
8.5.2;4.5.2 Niche and Speciation in Unimodal Problems;107
8.5.3;4.5.3 Restricted Mating;110
8.6;4.6 Few Micro-operators;111
8.6.1;4.6.1 Segregation and Translocation;111
8.6.2;4.6.2 Duplication and Deletion;111
8.6.3;4.6.3 Sexual Determination;112
8.7;4.7 Non-binary Representation;112
8.8;4.8 Multi-Objective Optimization;113
8.9;4.9 Combinatorial Optimizations;114
8.10;4.10 Knowledge Based Techniques;114
8.11;4.11 Summary;116
8.12;Review Questions;117
8.13;Exercise Problems;117
9;Classification of Genetic Algorithm;119
9.1;5.1 Introduction;119
9.2;5.2 Simple Genetic Algorithm (SGA);119
9.3;5.3 Parallel and Distributed Genetic Algorithm (PGA and DGA);120
9.3.1;5.3.1 Master-Slave Parallelization;123
9.3.2;5.3.2 Fine Grained Parallel GAs (Cellular GAs);124
9.3.3;5.3.3 Multiple-Deme Parallel GAs (Distributed GAs or Coarse Grained GAs);125
9.3.4;5.3.4 Hierarchical Parallel Algorithms;127
9.4;5.4 Hybrid Genetic Algorithm (HGA);129
9.4.1;5.4.1 Crossover;130
9.4.2;5.4.2 Initialization Heuristics;131
9.4.3;5.4.3 The RemoveSharp Algorithm;131
9.4.4;5.4.4 The LocalOpt Algorithm;133
9.5;5.5 Adaptive Genetic Algorithm (AGA);133
9.5.1;5.5.1 Initialization;134
9.5.2;5.5.2 Evaluation Function;134
9.5.3;5.5.3 Selection operator;135
9.5.4;5.5.4 Crossover operator;135
9.5.5;5.5.5 Mutation operator;136
9.6;5.6 Fast Messy Genetic Algorithm (FmGA);136
9.6.1;5.6.1 Competitive Template (CT) Generation;137
9.7;5.7 Independent Sampling Genetic Algorithm (ISGA);138
9.7.1;5.7.1 Independent Sampling Phase;139
9.7.2;5.7.2 Breeding Phase;140
9.8;5.8 Summary;141
9.9;Review Questions;142
9.10;Exercise Problems;143
10;Genetic Programming;144
10.1;6.1 Introduction;144
10.2;6.2 Comparison of GP with Other Approaches;144
10.3;6.3 Primitives of Genetic Programming;148
10.3.1;6.3.1 Genetic Operators;149
10.3.2;6.3.2 Generational Genetic Programming;149
10.3.3;6.3.3 Tree Based Genetic Programming;149
10.3.4;6.3.4 Representation of Genetic Programming;150
10.4;6.4 Attributes in Genetic Programming;154
10.5;6.5 Steps of Genetic Programming;156
10.5.1;6.5.1 Preparatory Steps of Genetic Programming;156
10.5.2;6.5.2 Executional Steps of Genetic Programming;159
10.6;6.6 Characteristics of Genetic Programming;162
10.6.1;6.6.1 What We Mean by "Human-Competitive;162
10.6.2;6.6.2 What We Mean by "High-Return";165
10.6.3;6.6.3 What We Mean by "Routine";167
10.6.4;6.6.4 What We Mean by "Machine Intelligence";167
10.7;6.7 Applications of Genetic Programming;169
10.7.1;6.7.1 Applications of Genetic Programming in Civil Engineering;169
10.8;6.8 Haploid Genetic Programming with Dominance;172
10.8.1;6.8.1 Single-Node Dominance Crossover;174
10.8.2;6.8.2 Sub-Tree Dominance Crossover;174
10.9;6.9 Summary;174
10.10;Review Questions;176
10.11;Exercise Problems;176
11;Genetic Algorithm Optimization Problems;177
11.1;7.1 Introduction;177
11.2;7.2 Fuzzy Optimization Problems;177
11.2.1;7.2.1 Fuzzy Multiobjective Optimization;178
11.2.2;7.2.2 Interactive Fuzzy Optimization Method;180
11.2.3;7.2.3 Genetic Fuzzy Systems;180
11.3;7.3 Multiobjective Reliability Design Problem;182
11.3.1;7.3.1 Network Reliability Design;182
11.3.2;7.3.2 Bicriteria Reliability Design;186
11.4;7.4 Combinatorial Optimization Problem;188
11.4.1;7.4.1 Linear Integer Model;190
11.4.2;7.4.2 Applications of Combinatorial Optimization;191
11.4.3;7.4.3 Methods;194
11.5;7.5 Scheduling Problems;199
11.5.1;7.5.1 Genetic Algorithm for Job Shop Scheduling Problems (JSSP);199
11.6;7.6 Transportation Problems;202
11.6.1;7.6.1 Genetic Algorithm in Solving Transportation Location- Allocation Problems with Euclidean Distances;203
11.6.2;7.6.2 Real-Coded Genetic Algorithm (RCGA) for Integer Linear Programming in Production- Transportation Problems with Flexible Transportation Cost;206
11.7;7.7 Network Design and Routing Problems;211
11.7.1;7.7.1 Planning of Passive Optical Networks;211
11.7.2;7.7.2 Planning of Packet Switched Networks;214
11.7.3;7.7.3 Optimal Topological Design of All Terminal Networks;215
11.8;7.8 Summary;220
11.9;Review Questions;220
11.10;Exercise Problems;221
12;Genetic Algorithm Implementation Using Matlab;222
12.1;8.1 Introduction;222
12.2;8.2 Data Structures;222
12.2.1;8.2.1 Chromosomes;223
12.2.2;8.2.2 Phenotypes;223
12.2.3;8.2.3 Objective Function Values;224
12.2.4;8.2.4 Fitness Values;224
12.2.5;8.2.5 Multiple Subpopulations;224
12.3;8.3 Toolbox Functions;225
12.4;8.4 Genetic Algorithm Graphical User Interface Toolbox;230
12.5;8.5 Solved Problems using MATLAB;235
12.6;8.6 Summary;272
12.7;Review Questions;272
12.8;Exercise Problems;273
13;Genetic Algorithm Optimization in C/C++;274
13.1;9.1 Introduction;274
13.2;9.2 Traveling Salesman Problem (TSP);274
13.3;9.3 Word Matching Problem;282
13.4;9.4 PrisonerÌs Dilemma;291
13.5;9.5 Maximize;297
13.6;9.6 Minimization a Sine Function with Constraints;303
13.6.1;9.6.1 Problem Description;304
13.7;9.7 Maximizing the Function;313
13.8;9.8 Quadratic Equation Solving;321
13.9;9.9 Summary;326
13.9.1;9.9.1 Projects;326
14;Applications of Genetic Algorithms;328
14.1;10.1 Introduction;328
14.2;10.2 Mechanical Sector ;328
14.2.1;10.2.1 Optimizing Cyclic-Steam Oil Productionwith Genetic Algorithms;328
14.2.2;10.2.2 Genetic Programming and Genetic Algorithms for Auto- tuning Mobile Robot Motion Control;331
14.3;10.3 Electrical Engineering ;335
14.3.1;10.3.1 Genetic Algorithms in Network Synthesis;335
14.3.2;10.3.2 Genetic Algorithm Tools for Control Systems Engineering;339
14.3.3;10.3.3 Genetic Algorithm Based Fuzzy Controller for Speed Control of Brushless DC Motor;345
14.4;10.4 Machine Learning ;352
14.5;10.4.1 Feature Selection in Machine learning using GA;352
14.6;10.5 Civil Engineering ;356
14.6.1;10.5.1 Genetic Algorithm as Automatic Structural Design Tool;356
14.6.2;10.5.2 Genetic Algorithm for Solving Site Layout Problem;361
14.7;10.6 Image Processing ;363
14.7.1;10.6.1 Designing Texture Filters with Genetic Algorithms;363
14.7.2;10.6.2 Genetic Algorithm Based Knowledge Acquisition on Image Processing;368
14.7.3;10.6.3 Object Localization in Images Using Genetic Algorithm;373
14.7.4;10.6.4 Problem Description;374
14.7.5;10.6.5 Image Preprocessing;375
14.7.6;10.6.6 The Proposed Genetic Algorithm Approach;376
14.8;10.7 Data Mining;378
14.8.1;10.7.1 A Genetic Algorithm for Feature Selection in Data-Mining;378
14.8.2;10.7.2 Genetic Algorithm Based Fuzzy Data Mining to Intrusion Detection;381
14.8.3;10.7.3 Selection and Partitioning of Attributes in Large-Scale Data Mining Problems Using Genetic Algorithm;390
14.9;10.8 Wireless Networks ;397
14.9.1;10.8.1 Genetic Algorithms for Topology Planningin Wireless Networks;397
14.9.2;10.8.2 Genetic Algorithm for Wireless ATM Network;398
14.10;10.9 Very Large Scale Integration (VLSI) ;406
14.10.1;10.9.1 Development of a Genetic Algorithm Techniquefor VLSI Testing;406
14.10.2;10.9.2 VLSI Macro Cell Layout Using Hybrid GA;408
14.10.3;10.9.3 Problem Description;409
14.10.4;10.9.4 Genetic Layout Optimization;410
14.11;10.10 Summary;413
15;Introduction to Particle Swarm Optimization and Ant Colony Optimization;414
15.1;11.1 Introduction;414
15.2;11.2 Particle Swarm Optimization;414
15.2.1;11.2.1 Background of Particle Swarm Optimization;415
15.2.2;11.2.2 Operation of Particle Swarm Optimization;416
15.2.3;11.2.3 Basic Flow of Particle Swarm Optimization;418
15.2.4;11.2.4 Comparison Between PSO and GA;419
15.2.5;11.2.5 Applications of PSO;421
15.3;11.3 Ant Colony Optimization;421
15.3.1;11.3.1 Biological Inspiration;421
15.3.2;11.3.2 Similarities and Differences Between Real Ants and Artificial Ants;425
15.3.3;11.3.3 Characteristics of Ant Colony Optimization;426
15.3.4;11.3.4 Ant Colony Optimization Algorithms;427
15.3.5;11.3.5 Applications of Ant Colony Optimization;433
15.4;11.4 Summary;435
15.5;Review Questions;435
15.6;Exercise Problems;435
15.7;Web Bibliography;451



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.