Sinha / Fan / Bajaj | Integrating AI in Science, Management, and Technology | Buch | 978-3-032-08259-6 | www2.sack.de

Buch, Englisch, 388 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 610 g

Reihe: Communications in Computer and Information Science

Sinha / Fan / Bajaj

Integrating AI in Science, Management, and Technology

First International Conference, AISMT 2025, Vadodara, India, February 20-21, 2025, Proceedings
Erscheinungsjahr 2025
ISBN: 978-3-032-08259-6
Verlag: Springer

First International Conference, AISMT 2025, Vadodara, India, February 20-21, 2025, Proceedings

Buch, Englisch, 388 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 610 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-032-08259-6
Verlag: Springer


This book constitutes the refereed post-conference proceedings of the First International Conference on Interdisciplinary Horizons: Integrating AI in Science, Management, and Technology, AISMT 2025 held in Vadodara, India during February 20-21, 2025.

The 21 full papers and 6 short papers included in this book were carefully reviewed and selected from 136 submissions.These papers are thematically grouped into three broad categories: AI in Science, which includes contributions in Healthcare AI, Catalyst Prediction, Early Disease Detection, and Nanotechnology; AI in Management, addressing areas such as AI Ethics, Business Analytics, Decision Optimization, and Strategic AI Applications; and AI in Technology, encompassing research on Artificial Intelligence, Machine Learning, Deep Learning, and Speech and Text Processing.

Sinha / Fan / Bajaj Integrating AI in Science, Management, and Technology jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- The Impact of Technology and Artificial Intelligence oImproving Financial Management Performance.
.- Confronting Online Finance Scams with Vigilance, Regulations and Action.
.- Behavioral Arbitration for Effective Decision Making in Autonomous Vehicles by Using Deep Convolutional Neural Networks.
.- Privacy Preservation in Secure Multi-Cloud Data Fusion for Infectious Disease Analysis.
.- Analysing AI driven Bat algorithm to solve the Traveling Salesman problem.
.- Innovative and Hybrid Approach for Detection and Classification of Pancreatic Cancer from CT Scans Images using Deep Learning Model.
.- Optimizing Real-Time Facial Recognition Through Image Brightening and Feature Enhancement Techniques.
.- YOLOv5-Based Human Tracking System.
.- Automated Redaction Framework: Utilizing SpaCy and ChaCha20- Poly1305 for Secure Information Handling.
.- A Prediction and Optimization Model for Predicting Genetic Diseases in Crops.
.- Title Generation and Automated Topic Modeling in Academic Texts.
.- Using Machine Learning to Detect Fraudulent SMSs in Chichewa.
.- AI-Driven Mechanical Manufacturing: Bridging Industry 4.0 and the Human-Centric Vision of Industry 5.0.
.- Elevating Credit Risk Analysis with Cloud-Optimized Machine Learning Architectures.
.- Shan Handwritten Alphabet Recognition System: A Comparative Study of Machine Learning and Deep Learning Method.
.- Enhancing Attendance Management: A Novel Approach using Advanced Face Recognition Technology.
.- Optimizing ASR for Low-Resource Language: Fine-Tuning Wav2Vec2-XLSR for Gujarati.
.- MHC-CNN: A CNN Framework for Stream Selection in Secondary Education Using Modified Huffman Coding.
.- An Innovative Robopinody for Piano Performance using LEGO Mindstorms EV3.
.- Deep Learning Based YOLO-Face Model Design for High-Performance and Enhanced Face Landmark Detection.
.- Facial Expression Recognition for Individuals with Intellectual Disabilities using Machine Learning.
.- NSAP: A Neural Network-Based Stress Analysis Pipeline Using EEG Topographic Images.
.- Predicting Climate Temperature using Hybrid Models.
.- Smart Food Analysis: Machine Learning Model for Food Adulteration Detection and Pricing.
.- Data Visualization and Analysis on Ground Water of Samoda Chhattisgarh.
.- Towards Enhanced Word Spotting in Historical Devanagari Documents Using Deep CNN Architecture.
.- Text validation in NLP applications: A Chain of Responsibility approach.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.