Singh / Ohji / Asthana | Green and Sustainable Manufacturing of Advanced Material | Buch | 978-0-12-411497-5 | sack.de

Buch, Englisch, 688 Seiten, Format (B × H): 152 mm x 231 mm, Gewicht: 1225 g

Singh / Ohji / Asthana

Green and Sustainable Manufacturing of Advanced Material

Buch, Englisch, 688 Seiten, Format (B × H): 152 mm x 231 mm, Gewicht: 1225 g

ISBN: 978-0-12-411497-5
Verlag: Elsevier Science


Sustainable development is a globally recognized mandate and it includes green or environment-friendly manufacturing practices. Such practices orchestrate with the self-healing and self-replenishing capability of natural ecosystems. Green manufacturing encompasses synthesis, processing, fabrication, and process optimization, but also testing, performance evaluation and reliability. The book shall serve as a comprehensive and authoritative resource on sustainable manufacturing of ceramics, metals and their composites. It is designed to capture the diversity and unity of methods and approaches to materials processing, manufacturing, testing and evaluation across disciplines and length scales. Each chapter incorporates in-depth technical information without compromising the delicate link between factual data and fundamental concepts or between theory and practice. Green and sustainable materials processing and manufacturing is designed as a key enabler of sustainable development.
Singh / Ohji / Asthana Green and Sustainable Manufacturing of Advanced Material jetzt bestellen!

Zielgruppe


<p>Practicing engineers and technologists at major manufacturing companies and R&D establishments with current or emerging interest in green and sustainable manufacturing; these include nuclear industry, automotive industry, aerospace, defense, and general manufacturing. Also, researchers at companies and organizations such as Honeywell, Lockheed-Martin, Boeing, Siemens, IBM, Intel, Department of Energy (DoE), Department of Defense (DoD), NASA, Sandia, Oak Ridge and their contractors. Also advanced graduate students at universities worldwide with departments and/or degree programs in Materials Science and Engineering, Manufacturing, Ceramics, Chemistry, Chemical Engineering and Electronics.</p>

Weitere Infos & Material


PART I. Introduction PART II. New Green Materials and Technologies PART III. Energy and Material Conservation PART IV. Resource Recovery, Recycling and Reuse Technology


Singh, Mrityunjay
Dr. Mrityunjay Singh is a postdoctoral candidate at Technical University Darmstadt, Germany at the Institute of Applied Geosciences, in the Department of Materials and Earth Sciences. He has completed his Ph.D. from the Department of Applied Mechanics, Indian Institute of Technology Madras on CO2 sequestration and geothermal energy extraction mechanisms. He has expertise in thermo-hydro-mechanical-chemical coupling for subsurface fluid dynamics processes including CO2 sequestration, geothermal energy extraction and underground hydrogen storage. He has developed compositional reservoir models and used machine learning tools to understand subsurface geoenergy applications.

Ohji, Tatsuki
Tatsuki Ohji, Ph.D., FASM, FACerS, is the Prime Senior Research Scientist at Japan's National Institute of Advanced Industrial Science and Technology (AIST) and Designated Professor in the Graduate School of Science and Engineering, Meijo University. He has authored or coauthored more than 330 scientific papers, edited 30 books and conference volumes, and holds more than 40 patents. A recipient of numerous honors and awards, he is a Fellow of the American Ceramic Society and ASM International, Academician of the World Academy of Ceramics, Governor of Acta Materialia, Inc., and on the editorial boards of many international journals including International Materials Reviews, Journal of the American Ceramic Society, International Journal of Applied Ceramic Technology, and Ceramics International. His research interests include characterization of ceramics, ceramic composites and porous materials, design of advanced ceramics, and green ceramic manufacturing.

Asthana, Rajiv
Rajiv Asthana, Ph.D., FASM, is Fulton and Edna Holtby Endowed Chair in manufacturing at the University of Wisconsin-Stout where he teaches in the manufacturing engineering program. He is Editor of Journal of Materials Engineering & Performance and on the editorial boards of Ceramics International and Materials Science and Engineering A. He has authored or coauthored five books, including Materials Science in Manufacturing (Elsevier) and 160 scientific publications, and co-edited Ceramic Integration and Joining Technologies (Wiley). His research interests include ceramic/metal joining, high-temperature capillarity and cast metal-matrix composites.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.