Singh / Manure | Learn TensorFlow 2.0 | E-Book | sack.de
E-Book

E-Book, Englisch, 164 Seiten, eBook

Singh / Manure Learn TensorFlow 2.0

Implement Machine Learning and Deep Learning Models with Python
1. Auflage 2019
ISBN: 978-1-4842-5558-2
Verlag: APRESS
Format: PDF
Kopierschutz: 1 - PDF Watermark

Implement Machine Learning and Deep Learning Models with Python

E-Book, Englisch, 164 Seiten, eBook

ISBN: 978-1-4842-5558-2
Verlag: APRESS
Format: PDF
Kopierschutz: 1 - PDF Watermark



Learn how to use TensorFlow 2.0 to build machine learning and deep learning models with complete examples. 
The book begins with introducing TensorFlow 2.0 framework and the major changes from its last release. Next, it focuses on building Supervised Machine Learning models using TensorFlow 2.0. It also demonstrates how to build models using customer estimators. Further, it explains how to use TensorFlow 2.0 API to build machine learning and deep learning models for image classification using the standard as well as custom parameters. 
You'll review sequence predictions, saving, serving, deploying, and standardized datasets, and then deploy these models to production. All the code presented in the book will be available in the form of executable scripts at Github which allows you to try out the examples and extend them in interesting ways.
What You'll Learn
  • Review the new features of TensorFlow 2.0
  • Use TensorFlow 2.0 to build machine learning and deep learning models 
  • Perform sequence predictions using TensorFlow 2.0
  • Deploy TensorFlow 2.0 models with practical examples
Who This Book Is For
Data scientists, machine and deep learning engineers.

Singh / Manure Learn TensorFlow 2.0 jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


Learn TensorFlow 2.0
Chapter 1:  TensorFlow 2.0 – An Introduction Chapter Goal: Introducing TensorFlow, major features, version 2.0 release.
Chapter 2: Supervised Learning with TensorFlow 2.0Chapter Goal: Implementation of linear, logistic, SVM (Support Vector Machines) and random forest using TensorFlow.
Chapter 3: Neural Networks and Deep Learning with TensorFlow 2.0Chapter Goal: Introduction to neural networks, deep learning and implementation using TensorFlow This chapter offers a detailed view of building Deep Learning models for various applications such as Forecasting using TensorFlow 2.0. The chapter also introduces optimization approaches and the techniques for hyper parameter tuning.
Chapter 4: Images with TensorFlow 2.0Chapter Goal: TensorFlow 2.0 for images. This chapter focuses on building deep learning based models for image classification using TensorFlow 2.0. It covers advanced techniques such as GANs and transfer learning to image processing and classifications
Chapter 5: Sequence to Sequence Modeling with TensorFlow 2.0
Chapter Goal: To understand sequence modeling using TensorFlow 2.0. This chapter covers the process of using different neural networks for NLP based tasks in TensorFlow 2.0. This includes sequence to sequence prediction, text translation using deep learning in TensorFlow 2.0
Chapter 6: TensorFlow 2.0 Models in Productionization
Chapter Goal: Implementation of distributed training using TensorFlow. This chapter covers the process of scaling up the machine learning model training by implementing distributed training of TensorFlow models and deploying those models into production using TensorFlow serving layer





Pramod Singh is currently playing a role of Machine Learning Expert at Walmart Labs. He has extensive hands-on experience in machine learning, deep learning, AI, data engineering, designing algorithms and application development. He has spent more than 10 years working on multiple data projects at different organizations. He’s the author of three books -Machine Learning with PySpark , Learn PySpark and Learn TensorFlow 2.0. He is also a regular speaker at major conferences such as O’Reilly’s Strata and AI conferences. Pramod holds a BTech in electrical engineering from  B.A.T.U, and an  MBA from Symbiosis University. He has also done Data Science certification from IIM–Calcutta. He lives in Bangalore with his wife and three-year-old son. In his spare time, he enjoys playing guitar, coding, reading, and watching football.
Avinash Manure is a Senior Data Scientist at Publicis Sapient with over 8 years of experience in solving real-world business challenges using Data. He is proficient in deploying complex machine learning and statistical modeling algorithms/techniques for identifying patterns and extracting valuable insights for key stakeholders and organizational leadership. Avinash holds a bachelor’s degree in Electronics Engineering from Mumbai University and has done his Master’s in Business Administration (Marketing) from University of Pune. He is currently settled in Bangalore with his wife. He enjoys travelling to new places and reading motivational books.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.