Singh / Gehlot | Business Data Analytics | Buch | 978-3-031-80777-0 | sack.de

Buch, Englisch, Band 2358, 402 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 628 g

Reihe: Communications in Computer and Information Science

Singh / Gehlot

Business Data Analytics

Second International Conference, ICBDA 2023, Dehradun, India, December 7-8, 2023, Proceedings
Erscheinungsjahr 2024
ISBN: 978-3-031-80777-0
Verlag: Springer Nature Switzerland

Second International Conference, ICBDA 2023, Dehradun, India, December 7-8, 2023, Proceedings

Buch, Englisch, Band 2358, 402 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 628 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-80777-0
Verlag: Springer Nature Switzerland


This book constitutes the proceedings of the Second International Conference on Business Data Analytics , ICBDA 2023 held in Dehradun, India, in December 7–8, 2023. 

The 28 full papers presented together were carefully reviewed and selected from 130 submissions. They focus on all aspects of businesses to familiarize and operate strategic firms and talent supervision skills, diabetes data analysis, predictive analysis with a focus on future trend forecasting, approximation theory, control theory, and signal processing, AI-powered drones use computer vision to recognize, classify, and track objects, etc.

Singh / Gehlot Business Data Analytics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- An Analysis and role of Artificial intelligence in the Field of Human resource management to creating enhanced Industry 4.0 for sustainable Development in Economy & its Growth.
.- Integrating Computer Vision and Pattern Recognition in Fraud Detection for Financial Accounts.
.- A Novel Approach for Diabetic Prediction Using Attribute Subset Selection, K-Means and Logistic Regression.
.- Diabetic Retinopathy Detection Approach Using Convolution Neural Networks.
.- Voting Regression Model for the Air Quality Prediction.
.- Quantitative Assessment on Investigation on the Impact of Artificial Intelligence on HR Practices and Organizational Efficiency for Industry 4.0.
.- NIR Spectroscopy for Freshness Detection and Classification of Chicken Eggs.
.- Human Action Recognition in Infrared Domain: A Study on IITR-IAR Dataset.
.- Software Requirements Prioritization using fuzzy based TOPSIS Methods.
.- Predictive Analytics for Inventory Management in Multi-Vendor E-Commerce.
.- Data Analytics Augmented by AI in the Realm of 6G Wireless Communication.
.- Big Data-Powered Analytics for Fortifying Virtualized Infrastructure Security in the Cloud.
.- Orthogonal polynomials and their engineering applications.
.- Explainable AI for Drone Data Analytics in Aerial Computing.
.- Correlational Analysis of Risk-taking Propensity in Adolescents.
.- Analytical insight into cutting-edge image captioning for advanced ChatGPT functionality.
.- An Expert System for Talent Prediction and Enhancement of Non-Talented Cricket Performers.
.- Predicting Early Dropouts in SWAYAM MOOCs Using Machine Learning Techniques: A Comparative Analysis.
.- Data Analysis of Social Media’s Impact on Promotion of organic products in Uttarakhand.
.- Enhancing Academic Performance Prediction through K-Means Clustering and Comparative Evaluation of Machine Learning Algorithms: A Case Study on Student Dataset.
.- Data Analytics Augmented by AI in the Realm of 6G Wireless Communication.
.- Multi-level thresholding segmentation of chest X-ray images of COVID-19 patients using Chaos Game Optimizer and utilizing Kapur's entropy.
.- A Spam Detecting Model Based on Basic ML Classifiers: Comparative Analysis via ABC Algorithm and Result Generation.
.- Concrete Strength Prediction using Machine Learning.
.- Unveiling the Digitalization Dilemma: A Study of Business Analytics Adoption in Small and Mid-Sized Manufacturing Firms post-COVID-19.
.- A Comprehensive Survey of Content-Based Music Recommendation Techniques.
.- Predictive Analysis of Blockchain Technology for Securing Electronic Health Records.
.- Application of Cutting-Edge Deep Learning & NLP Techniques for Mutual Fund NAV Analysis and Investment Evaluation.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.