Simon / Fischer | Computational Learning Theory | Buch | 978-3-540-65701-9 | sack.de

Buch, Englisch, Band 1572, 299 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1010 g

Reihe: Lecture Notes in Computer Science

Simon / Fischer

Computational Learning Theory

4th European Conference, EuroCOLT'99 Nordkirchen, Germany, March 29-31, 1999 Proceedings
1999
ISBN: 978-3-540-65701-9
Verlag: Springer Berlin Heidelberg

4th European Conference, EuroCOLT'99 Nordkirchen, Germany, March 29-31, 1999 Proceedings

Buch, Englisch, Band 1572, 299 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1010 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-540-65701-9
Verlag: Springer Berlin Heidelberg


This volume contains papers presented at the Fourth European Conference on ComputationalLearningTheory,whichwasheldatNordkirchenCastle,inNo- kirchen, NRW, Germany, from March 29 to 31, 1999. This conference is the fourth in a series of bi-annual conferences established in 1993. TheEuroCOLTconferencesarefocusedontheanalysisoflearningalgorithms and the theory of machine learning, and bring together researchers from a wide variety of related elds. Some of the issues and topics that are addressed include the sample and computational complexity of learning speci c model classes, frameworks modeling the interaction between the learner, teacher and the en- ronment (such as learning with queries, learning control policies and inductive inference),learningwithcomplexmodels(suchasdecisiontrees,neuralnetworks, and support vector machines), learning with minimal prior assumptions (such as mistake-bound models, universal prediction, and agnostic learning), and the study of model selection techniques. We hope that these conferences stimulate an interdisciplinary scienti c interaction that will be fruitful in all represented elds. Thirty- ve papers were submitted to the program committee for conside- tion, and twenty-one of these were accepted for presentation at the conference and publication in these proceedings. In addition, Robert Schapire (AT & T Labs), and Richard Sutton (AT & T Labs) were invited to give lectures and contribute a written version to these proceedings. There were a number of other joint events including a banquet and an excursion to Munster ¨. The IFIP WG 1.4 Scholarship was awarded to Andra s Antos for his paper \Lower bounds on the rate of convergence of nonparametric pattern recognition".

Simon / Fischer Computational Learning Theory jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Invited Lectures.- Theoretical Views of Boosting.- Open Theoretical Questions in Reinforcement Learning.- Learning from Random Examples.- A Geometric Approach to Leveraging Weak Learners.- Query by Committee, Linear Separation and Random Walks.- Hardness Results for Neural Network Approximation Problems.- Learning from Queries and Counterexamples.- Learnability of Quantified Formulas.- Learning Multiplicity Automata from Smallest Counterexamples.- Exact Learning when Irrelevant Variables Abound.- An Application of Codes to Attribute-Efficient Learning.- Learning Range Restricted Horn Expressions.- Reinforcement Learning.- On the Asymptotic Behavior of a Constant Stepsize Temporal-Difference Learning Algorithm.- On-line Learning and Expert Advice.- Direct and Indirect Algorithms for On-line Learning of Disjunctions.- Averaging Expert Predictions.- Teaching and Learning.- On Teaching and Learning Intersection-Closed Concept Classes.- Inductive Inference.- Avoiding Coding Tricks by Hyperrobust Learning.- Mind Change Complexity of Learning Logic Programs.- Statistical Theory of Learning and Pattern Recognition.- Regularized Principal Manifolds.- Distribution-Dependent Vapnik-Chervonenkis Bounds.- Lower Bounds on the Rate of Convergence of Nonparametric Pattern Recognition.- On Error Estimation for the Partitioning Classification Rule.- Margin Distribution Bounds on Generalization.- Generalization Performance of Classifiers in Terms of Observed Covering Numbers.- Entropy Numbers, Operators and Support Vector Kernels.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.