Simmonds | A Brief on Tensor Analysis | E-Book | sack.de
E-Book

E-Book, Englisch, eBook

Reihe: Undergraduate Texts in Mathematics

Simmonds A Brief on Tensor Analysis


Erscheinungsjahr 2012
ISBN: 978-1-4684-0141-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, eBook

Reihe: Undergraduate Texts in Mathematics

ISBN: 978-1-4684-0141-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



When I was an undergraduate, working as a co-op student at North American Aviation, I tried to learn something about tensors. In the Aeronautical En gineering Department at MIT, I had just finished an introductory course in classical mechanics that so impressed me that to this day I cannot watch a plane in flight-especially in a tum-without imaging it bristling with vec tors. Near the end of the course the professor showed that, if an airplane is treated as a rigid body, there arises a mysterious collection of rather simple looking integrals called the components of the moment of inertia tensor. Tensor-what power those two syllables seemed to resonate. I had heard the word once before, in an aside by a graduate instructor to the cognoscenti in the front row of a course in strength of materials. "What the book calls stress is actually a tensor. . . ." With my interest twice piqued and with time off from fighting the brush fires of a demanding curriculum, I was ready for my first serious effort at self instruction. In Los Angeles, after several tries, I found a store with a book on tensor analysis. In my mind I had rehearsed the scene in which a graduate stu dent or professor, spying me there, would shout, "You're an undergraduate.

Simmonds A Brief on Tensor Analysis jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


I Introduction: Vectors and Tensors.- Three-Dimensional Euclidean Space.- Directed Line Segments.- Addition of Two Vectors.- Multiplication of a Vector v by a Scalar ?.- Things That Vectors May Represent.- Cartesian Coordinates.- The Dot Product.- Cartesian Base Vectors.- The Interpretation of Vector Addition.- The Cross Product.- Alternate Interpretation of the Dot and Cross Product. Tensors.- Definitions.- The Cartesian Components of a Second Order Tensor.- The Cartesian Basis for Second Order Tensors.- Exercises.- II General Bases and Tensor Notation.- General Bases.- The Jacobian of a Basis Is Nonzero.- The Summation Convention.- Computing the Dot Product in a General Basis.- Reciprocal Base Vectors.- The Roof (Contravariant) and Cellar (Covariant) Components of a Vector.- Simplification of the Component Form of the Dot Product in a General Basis.- Computing the Cross Product in a General Basis.- A Second Order Tensor Has Four Sets of Components in General.- Change of Basis.- Exercises.- III Newton’s Law and Tensor Calculus.- Rigid Bodies.- New Conservation Laws.- Nomenclature.- Newton’s Law in Cartesian Components.- Newton’s Law in Plane Polar Coordinates.- The Physical Components of a Vector.- The Christoffel Symbols.- General Three-Dimensional Coordinates.- Newton’s Law in General Coordinates.- Computation of the Christoffel Symbols.- An Alternate Formula for Computing the Christoffel Symbols.- A Change of Coordinates.- Transformation of the Christoffel Symbols.- Exercises.- IV The Gradient Operator, Covariant Differentiation, and the Divergence Theorem.- The Gradient.- Linear and Nonlinear Eigenvalue Problems.- The Del or Gradient Operator.- The Divergence, Curl, and Gradient of a Vector Field.- The Invariance of ? · v, ? × v, and ?v.- TheCovariant Derivative.- The Component Forms of ? · v, ? × v, and ?v.- The Kinematics of Continuum Mechanics.- The Divergence Theorem.- Exercises.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.