Simchi-Levi / Chen / Bramel | The Logic of Logistics | E-Book | sack.de
E-Book

E-Book, Englisch, 281 Seiten, eBook

Reihe: Springer Series in Operations Research and Financial Engineering

Simchi-Levi / Chen / Bramel The Logic of Logistics

Theory, Algorithms, and Applications for Logistics Management
1997
ISBN: 978-1-4684-9309-2
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

Theory, Algorithms, and Applications for Logistics Management

E-Book, Englisch, 281 Seiten, eBook

Reihe: Springer Series in Operations Research and Financial Engineering

ISBN: 978-1-4684-9309-2
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



Fierce competition in today's global market provides a powerful motivation for developing ever more sophisticated logistics systems. This book, written for the logistics manager and researcher, presents a timely and authoritative survey of the modern theory and application of logistics, including case studies in which decision support tools for large-scale logistics applications are developed.

Simchi-Levi / Chen / Bramel The Logic of Logistics jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


1 Introduction.- 1.1 What Is Logistics Management?.- 1.2 Examples.- 1.3 Modeling Logistics Problems.- 1.4 Logistics in Practice.- 1.5 Evaluation of Solution Techniques.- 1.6 Additional Topics.- 1.7 Book Overview.- I Performance Analysis Techniques.- 2 Worst-Case Analysis.- 2.1 Introduction.- 2.2 The Bin-Packing Problem.- 2.2.1 First-Fit and Best-Fit.- 2.2.2 First-Fit Decreasing and Best-Fit Decreasing.- 2.3 The Traveling Salesman Problem.- 2.3.1 A Minimum Spanning Tree Based Heuristic.- 2.3.2 The Nearest Insertion Heuristic.- 2.3.3 Christofides’ Heuristic.- 2.3.4 Local Search Heuristics.- 2.4 Exercises.- 3 Average-Case Analysis.- 3.1 Introduction.- 3.2 The Bin-Packing Problem.- 3.3 The Traveling Salesman Problem.- 3.4 Exercises.- 4 Mathematical Programming Based Bounds.- 4.1 Introduction.- 4.2 An Asymptotically Tight Linear Program.- 4.3 Lagrangian Relaxation.- 4.4 Lagrangian Relaxation and the Traveling Salesman Problem.- 4.4.1 The 1-Tree Lower Bound.- 4.4.2 The 1-Tree Lower Bound and Lagrangian Relaxation.- 4.5 The Worst-Case Effectiveness of the 1-tree Lower Bound.- 4.6 Exercises.- II Vehicle Routing Models.- 5 The Capacitated VRP with Equal Demands.- 5.1 Introduction.- 5.2 Worst-Case Analysis of Heuristics.- 5.3 The Asymptotic Optimal Solution Value.- 5.4 Asymptotically Optimal Heuristics.- 5.5 Exercises.- 6 The Capacitated VRP with Unequal Demands.- 6.1 Introduction.- 6.2 Heuristics for the CVRP.- 6.3 Worst-Case Analysis of Heuristics.- 6.4 The Asymptotic Optimal Solution Value.- 6.4.1 A Lower Bound.- 6.4.2 An Upper Bound.- 6.5 Probabilistic Analysis of Classical Heuristics.- 6.5.1 A Lower Bound.- 6.5.2 The UOP(?) Heuristic.- 6.6 The Uniform Model.- 6.7 The Location-Based Heuristic.- 6.8 Rate of Convergence to the Asymptotic Value.- 6.9 Exercises.- 7 The VRP with Time Window Constraints.- 7.1 Introduction.- 7.2 The Model.- 7.3 The Asymptotic Optimal Solution Value.- 7.4 An Asymptotically Optimal Heuristic.- 7.4.1 The Location-Based Heuristic.- 7.4.2 A Solution Method for CVLPTW.- 7.4.3 Implementation.- 7.4.4 Numerical Study.- 7.5 Exercises.- 8 Solving the VRP Using a Column Generation Approach.- 8.1 Introduction.- 8.2 Solving a Relaxation of the Set-Partitioning Formulation.- 8.3 Solving the Set-Partitioning Problem.- 8.3.1 Identifying Violated Clique Constraints.- 8.3.2 Identifying Violated Odd Hole Constraints.- 8.4 The Effectiveness of the Set-Partitioning Formulation.- 8.4.1 Motivation.- 8.4.2 Proof of Theorem 841.- 8.5 Exercises.- III Inventory Models.- 9 Economic Lot Size Models with Constant Demands.- 9.1 Introduction.- 9.1.1 The Economic Lot Size Model.- 9.1.2 The Finite Horizon Model.- 9.1.3 Power of Two Policies.- 9.2 Multi-Item Inventory Models.- 9.2.1 Introduction.- 9.2.2 Notation and Assumptions.- 9.2.3 Worst-Case Analyses.- 9.3 A Single Warehouse Multi-Retailer Model.- 9.3.1 Introduction.- 9.3.2 Notation and Assumptions.- 9.4 Exercises.- 10 Economic Lot Size Models with Varying Demands.- 10.1 The Wagner-Whitin Model.- 10.2 Models with Capacity Constraints.- 10.3 Multi-Item Inventory Models.- 10.4 Exercises.- 11 Stochastic Inventory Models.- 11.1 Introduction.- 11.2 Single Period Models.- 11.3 Finite Horizon Models.- 11.4 Quasiconvex Loss Functions.- 11.5 Infinite Horizon Models.- 11.6 Multi-Echelon Systems.- 11.7 Exercises.- IV Hierarchical Models.- 12 Facility Location Models.- 12.1 Introduction.- 12.2 An Algorithm for the p -Median Problem.- 12.3 An Algorithm for the Single-Source Capacitated Facility Location Problem.- 12.4 A Distribution System Design Problem.- 12.5 The Structure of the Asymptotic Optimal Solution.- 12.6 Exercises.- 13 Integrated Logistics Models.- 13.1 Introduction.- 13.2 Single Warehouse Models.- 13.3 Worst-Case Analysis of Direct Shipping Strategies.- 13.3.1 A Lower Bound.- 13.3.2 The Effectiveness of Direct Shipping.- 13.4 Asymptotic Analysis of ZIO Policies.- 13.4.1 A Lower Bound on the Cost of Any Policy.- 13.4.2 An Efficient Fixed Partition Policy.- 13.5 Asymptotic Analysis of Cross-Docking Strategies.- 13.6 An Algorithm for Multi-Echelon Distribution Systems.- 13.7 Exercises.- V Logistics Algorithms in Practice.- 14 A Case Study: School Bus Routing.- 14.1 Introduction.- 14.2 The Setting.- 14.3 Literature Review.- 14.4 The Problem in New York City.- 14.5 Distance and Time Estimation.- 14.6 The Routing Algorithm.- 14.7 Additional Constraints and Features.- 14.8 The Interactive Mode.- 14.9 Data, Implementation and Results.- 15 A Decision Support System for Network Configuration.- 15.1 Introduction.- 15.2 Data Collection.- 15.3 The Baseline Feature.- 15.4 Flexibility and Robustness.- 15.5 Exercises.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.