E-Book, Englisch, Band 56, 519 Seiten
Stochastic Approximation Methods, Volume 1
E-Book, Englisch, Band 56, 519 Seiten
Reihe: De Gruyter Studies in Mathematics
ISBN: 978-3-11-032982-7
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Researchers, Graduate Students, and Aractioneers in Financial Mathematics; Academic Libraries
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Preface;5
2;1 Multivariate modulated Markov log-price processes (LPP);11
2.1;1.1 Markov LPP;11
2.2;1.2 LPP represented by random walks;18
2.3;1.3 Autoregressive LPP;28
2.4;1.4 Autoregressive stochastic volatility LPP;38
3;2 American-type options;54
3.1;2.1 American-type options;54
3.2;2.2 Pay-off functions;57
3.3;2.3 Reward and log-reward functions;63
3.4;2.4 Optimal stopping times;73
3.5;2.5 American-type knockout options;82
4;3 Backward recurrence reward algorithms;86
4.1;3.1 Binomial tree reward algorithms;86
4.2;3.2 Trinomial tree reward algorithms;98
4.3;3.3 Random walk reward algorithms;110
4.4;3.4 Markov chain reward algorithms;116
5;4 Upper bounds for option rewards;125
5.1;4.1 Markov LPP with bounded characteristics;125
5.2;4.2 LPP represented by random walks;137
5.3;4.3 Markov LPP with unbounded characteristics;143
5.4;4.4 Univariate Markov Gaussian LPP;164
5.5;4.5 Multivariate modulated Markov Gaussian LPP;169
6;5 Convergence of option rewards – I;177
6.1;5.1 Asymptotically uniform upper bounds for rewards – I;178
6.2;5.2 Modulated Markov LPP with bounded characteristics;190
6.3;5.3 LPP represented by modulated random walks;204
7;6 Convergence of option rewards – II;213
7.1;6.1 Asymptotically uniform upper bounds for rewards – II;214
7.2;6.2 Univariate modulated LPP with unbounded characteristics;224
7.3;6.3 Asymptotically uniform upper bounds for rewards – III;230
7.4;6.4 Multivariate modulated LPP with unbounded characteristics;241
7.5;6.5 Conditions of convergence for Markov price processes;248
8;7 Space-skeleton reward approximations;251
8.1;7.1 Atomic approximation models;252
8.2;7.2 Univariate Markov LPP with bounded characteristics;261
8.3;7.3 MultivariateMarkov LPP with bounded characteristics;272
8.4;7.4 LPP represented by multivariate modulated random walks;285
8.5;7.5 MultivariateMarkov LPP with unbounded characteristics;304
9;8 Convergence of rewards for Markov Gaussian LPP;313
9.1;8.1 Univariate Markov Gaussian LPP;313
9.2;8.2 Multivariate modulated Markov Gaussian LPP;322
9.3;8.3 Markov Gaussian LPP with estimated characteristics;331
9.4;8.4 Skeleton reward approximations for Markov Gaussian LPP;345
9.5;8.5 LPP represented by Gaussian random walks;357
10;9 Tree-type approximations for Markov Gaussian LPP;367
10.1;9.1 Univariate binomial tree approximations;368
10.2;9.2 Multivariate binomial tree approximations;377
10.3;9.3 Multivariate trinomial tree approximations;389
10.4;9.4 Inhomogeneous in space binomial approximations;404
10.5;9.5 Inhomogeneous in time and space trinomial approximations;408
11;10 Convergence of tree-type reward approximations;423
11.1;10.1 Univariate binomial tree approximation models;423
11.2;10.2 Multivariate homogeneous in space tree models;434
11.3;10.3 Univariate inhomogeneous in space tree models;451
11.4;10.4 Multivariate inhomogeneous in space tree models;466
12;Bibliographical Remarks;475
13;Bibliography;485
14;Index;511