E-Book, Englisch, Band 98, 502 Seiten
Silva Materials Design and Applications II
1. Auflage 2018
ISBN: 978-3-030-02257-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 98, 502 Seiten
Reihe: Advanced Structured Materials
ISBN: 978-3-030-02257-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book highlights fundamental research on the design and application of engineering materials, and predominantly mechanical engineering applications. This area includes a wide range of technologies and materials, including metals, polymers, composites, and ceramics. Advanced applications include manufacturing cutting-edge materials, testing methods, and multi-scale experimental and computational aspects. The book introduces readers to a wealth of engineering applications in transport, civil, packaging and power generation.
LUCAS FILIPE MARTINS DA SILVA is currently a Professor at the Faculty of Engineering, University of Porto (FEUP). His work covers a wide range of engineering structural adhesives such as epoxies, acrylics and bismaleimides. Several test methods for adhesive joints are available at the FEUP, including various joint configurations such as bulk specimens, lap shear joints and butt joints. In addition to experimental work, detailed analytical models and finite element analyses of stresses and strains within the joints are also undertaken.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;7
3;Metals;11
4;Comparison of Artificial Neural Network and Adaptive Neuro Fuzzy Inference Systems for Predicting the Life of Blanking Punch;12
4.1;1 Introduction;12
4.2;2 Analytical Model for Blanking Punches;14
4.3;3 Proposed ANN and ANFIS Models to Estimate the Life of Blanking Punches;15
4.4;4 Testing of Proposed Models;17
4.5;5 Results and Discussion;18
4.6;6 Conclusions;21
4.7;References;23
5;Comparison Between Hot Rolled and PM/HIP Processed Duplex Stainless Steel UNS S31803;25
5.1;1 Introduction;26
5.2;2 Materials and Methods;27
5.3;3 Results and Discussion;29
5.4;4 Conclusions;34
5.5;References;35
6;Determination of Previous Austenite Grain Size 9%Ni Low Carbon Steel and Its Effect on Impact Toughness at -196 °C;37
6.1;1 Introduction;37
6.2;2 Materials and Methods;38
6.3;3 Results and Discussion;40
6.4;4 Conclusions;43
6.5;References;45
7;Corrosion Study of Ti5Al4V and Ti6Al4V in Different Simulated Body Fluids;46
7.1;1 Introduction;46
7.2;2 Experimental Procedures;48
7.3;3 Results and Discussions;50
7.4;4 Conclusions;63
7.5;References;63
8;Inverse Methodology for Estimating the Heat Transfer Coefficient in a Duplex Stainless Steel Casting;66
8.1;1 Introduction;67
8.2;2 Experimental Procedure;68
8.3;3 Methods;69
8.4;4 Results and Discussion;70
8.5;5 Conclusions;75
8.6;References;75
9;Polymers;77
10;Fluid Based Protective Structures;78
10.1;1 Introduction;78
10.2;2 Rheological Behavior of KM Material;80
10.3;3 Drop Tests;81
10.4;4 Ballistic Testing of Anti-trauma Pads;83
10.5;5 Conclusions;84
10.6;References;85
11;Ceramics;87
12;Synthesis of Mg–Zn–Ca Alloy by the Spark Plasma Sintering;88
12.1;1 Introduction;88
12.2;2 Materials and Methods;90
12.2.1;2.1 Material;90
12.2.2;2.2 Experimental Procedure;90
12.3;3 Results and Discussion;92
12.4;4 Conclusions;96
12.5;References;97
13;The Effect of Ceramic Application in Design of Ceramic-Based Plasters;100
13.1;1 Introduction;101
13.2;2 Studied Material;102
13.3;3 Experimental Measurements and Results;103
13.3.1;3.1 Mechanical Properties;103
13.3.2;3.2 Pore System;104
13.3.3;3.3 Thermal Analysis (DSC/TG);106
13.4;4 Conclusion;107
13.5;References;108
14;Visual Analysis of Ceramic Combinations with Educational Purposes for the Development of Artisan Products;110
14.1;1 Introduction;110
14.2;2 Development;111
14.3;3 Educational Applications;118
14.4;4 Conclusions;119
14.5;References;120
15;Design of the Ternary Gypsum-Based Building Composite Using Simplex Optimization;122
15.1;1 Introduction;122
15.2;2 Principles of Simplex Optimalization;124
15.3;3 Materials and Methods;126
15.4;4 Results and Discussion;126
15.5;5 Conclusions;129
15.6;References;130
16;Study of the Influence of Sintering Temperature on Water Absorption in the Manufacture of Porcelain Cups;132
16.1;1 Introduction;133
16.2;2 Experimental Procedure;140
16.3;3 Results and Discussion;143
16.4;4 Conclusions;149
16.5;References;149
17;Composites;151
18;Design and Characterization of Porous Collagen/Gelatin/Hydroxyethyl Cellulose Matrices Containing Microspheres Based on ?-Carrageenan;152
18.1;1 Introduction;152
18.2;2 Materials and Methods;153
18.2.1;2.1 Microencapsulation Procedure;153
18.2.2;2.2 Production of Collagen/Gelatin/Hydroxyethyl Cellulose Matrices Incorporating ?-Carrageenan-Based Microcapsules;154
18.2.3;2.3 Mechanical Properties;155
18.3;3 Results;155
18.4;4 Conclusions;156
18.5;References;157
19;Effects of Fiber Treatment on the Properties of Epoxy Curaua-Reinforced Composites;159
19.1;1 Introduction;159
19.2;2 Materials and Methods;161
19.2.1;2.1 Surface Treatment with NaOH;161
19.2.2;2.2 Materials;161
19.2.3;2.3 Methods;162
19.3;3 Results and Discussion;164
19.3.1;3.1 Tensile and Flexural Experiments;164
19.3.2;3.2 Thermal Analysis—DMA;165
19.4;4 Conclusions;167
19.5;References;168
20;Design;169
21;The Effect of the Position of Compression Screw in Plate-Screws Method Used in Fracture Treatment on Fatigue Strength of Joint;170
21.1;1 Introduction;171
21.2;2 Material and Experimental Procedure;172
21.3;3 Result and Discussion;175
21.3.1;3.1 Damages Occurring in the Joints According to Combinations;177
21.3.2;3.2 Comparison of the Measured Values Obtained at Each Combination;179
21.4;4 Conclusions;180
21.5;References;181
22;Life Cycle Cost Assessment and the Optimum Design of Timber Roofs for Sustainable Construction;182
22.1;1 Introduction;184
22.2;2 Basic Informations;185
22.2.1;2.1 Permanent Assumptions;185
22.2.2;2.2 Variables;186
22.2.3;2.3 Calculations;189
22.3;3 Structural Analysis;189
22.3.1;3.1 Loads;189
22.3.2;3.2 Ultimate Limit State—ULS;189
22.3.3;3.3 Serviceability Limit State—SLS;191
22.4;4 Life Cycle Cost (LCC) Modeling Approach [9, 11, 13];192
22.5;5 Results;192
22.6;6 Conclusions;198
22.7;References;199
23;Analysis and Conceptual Development of a New Packaging Material—Air Pack;201
23.1;1 Introduction and Framework;202
23.2;2 State of the Art;202
23.2.1;2.1 Packaging Materials;202
23.2.2;2.2 Air Pack;203
23.2.3;2.3 Packaging Tests;204
23.3;3 Experimental Work;205
23.3.1;3.1 Material Study;205
23.4;4 Results;205
23.5;5 Case Studies;207
23.5.1;5.1 Cost Reduction;211
23.6;6 Conclusions;211
23.7;References;211
24;The Toy as a Factor of Better Children’s Integration in Hospitalization Context;213
24.1;1 Introduction;214
24.2;2 Methodology;214
24.3;3 Data Collected;215
24.3.1;3.1 Secondary Research and Visual Research;215
24.3.2;3.2 Primary Research—Direct Analysis and Surveys;219
24.4;4 Experimental Work;221
24.4.1;4.1 Concepts;222
24.4.2;4.2 Product Proposal;223
24.4.3;4.3 Features;224
24.4.4;4.4 Materials;225
24.5;5 Tests and Final Results;227
24.5.1;5.1 Prototyping;227
24.5.2;5.2 Usability Tests and Results;229
24.6;6 Conclusions;230
24.7;References;231
25;Evaluation of Sustainability in the Development of Food Packaging;233
25.1;1 Introduction;234
25.2;2 Sustainable Packaging;235
25.2.1;2.1 Sustainable Development;235
25.2.2;2.2 Environmental Problems with Packaging;235
25.2.3;2.3 Fruit and Vegetable Packaging;236
25.2.4;2.4 Criteria for the Development of Sustainable Packaging;237
25.3;3 Case Study;243
25.3.1;3.1 Data Collection;243
25.4;4 Comparative Evaluation of Packaging Products;243
25.4.1;4.1 Description of Case Studies;243
25.4.2;4.2 Evaluation of Sustainability Criteria;245
25.5;5 Conclusions;247
25.6;References;248
26;Power Generation;249
27;Experimental Investigations of a MR Clutch for a Centrifugal Pump;250
27.1;1 Introduction;251
27.2;2 Experimental Test Rig and MR Clutch;252
27.3;3 MR Fluid and the Experimental Setup;254
27.4;4 Results;256
27.5;5 Conclusions;258
27.6;References;259
28;Experimental Investigations of a Magneto-Rheological Brake Embedded in a Swirl Generator Apparatus;261
28.1;1 Introduction;262
28.2;2 Experimental Test Rig;263
28.3;3 Magneto-Rheological Fluids;265
28.4;4 Experimental Investigations of MRB Device;267
28.5;5 Conclusions;272
28.6;References;273
29;Additive Manufacturing;276
30;Orientation of the Digital Model for SLA 3D Printing and Its Influence on the Accuracy of the Manufactured Physical Objects for Micro- and Nano Technologies;277
30.1;1 Introduction;278
30.2;2 Experimental Procedures;278
30.3;3 Experimental Results;280
30.4;4 Conclusions;284
30.5;References;285
31;Machining;286
32;Effect of Additives on the Machinability of Glass Fiber Reinforced Polymer;287
32.1;1 Introduction;288
32.2;2 Experimental Methodology;290
32.2.1;2.1 Materials;290
32.2.2;2.2 Machining Setup;292
32.2.3;2.3 Surface Analysis and Roughness Measurement System;295
32.3;3 Results;296
32.3.1;3.1 Influence of the Additives on the Cutting Forces;296
32.3.2;3.2 Influence of the Additives on the Cutting Temperature;297
32.3.3;3.3 Influence of the Additives on the Surface Roughness;298
32.4;4 Conclusion;302
32.5;References;303
33;Influence of Surface Topography of HSS Edges Produced by Different Methods on Their Technological and Functional Properties;305
33.1;1 Introduction—Aim and Scope of the Study;306
33.2;2 Materials Used in the Study;306
33.2.1;2.1 Cutting Edges;306
33.2.2;2.2 Processed Material;308
33.3;3 Study of Functional Characteristics;310
33.4;4 Verification Studies;312
33.5;5 Conclusions;321
33.6;References;322
34;Comparative Investigations of Durability of Cutting Edges Made of Nanocrystalline Cemented Carbides with Different Growth Inhibitors;323
34.1;1 Introduction;324
34.2;2 Materials and Methods;325
34.3;3 Results;329
34.4;4 Conclusions;331
34.5;References;331
35;Evaluation of Machining Defects in a Composite Laminate by Combining Non-destructive and Tensile Testing;333
35.1;1 Introduction;334
35.1.1;1.1 Ultrasonic Testing;334
35.1.2;1.2 Machining Damage in Composite Materials;334
35.1.3;1.3 Objective of Current Work;335
35.2;2 Evaluation of Ultrasonic Testing Resolution;336
35.2.1;2.1 Testing Setup;336
35.2.2;2.2 Artificial Defects Manufacturing;336
35.2.3;2.3 Samples Machined with Cutting Tools;337
35.2.4;2.4 Ultrasonic Results: Samples with Artificial Defects;339
35.2.5;2.5 Ultrasonic Results: Machined Samples;340
35.3;3 Tensile Testing;344
35.3.1;3.1 Experimental Details;344
35.3.2;3.2 Ultrasonic Inspection;346
35.3.3;3.3 Scanning Electron Microscope Observations;347
35.3.4;3.4 Tensile Test Results;349
35.4;4 Conclusions;352
35.5;References;352
36;The Effect of Machining on Surface Integrity of Gamma Titanium Aluminides Using Different Cemented Carbide Tools;355
36.1;1 Introduction;356
36.2;2 Experimental Procedure;358
36.2.1;2.1 Workpiece Material;358
36.2.2;2.2 Cutting Tool Material;360
36.2.3;2.3 Machining Tests;360
36.2.4;2.4 Cutting Force and Surface Integrity Testing;361
36.3;3 Results and Discussions;362
36.3.1;3.1 Cutting Forces and Surface Integrity Analysis;363
36.4;4 Conclusions;374
36.5;References;374
37;Fracture Mechanics;377
38;Analysis of the Semi-circular Bend (SCB) Specimen: Finite Element Method Determination of T-stress, KI and KII;378
38.1;1 Introduction;378
38.1.1;1.1 SCB Specimen;379
38.1.2;1.2 SE Specimen;380
38.2;2 Computation of Stress Intensity Factors;381
38.2.1;2.1 Displacement Correlation Technique (DCT);382
38.2.2;2.2 Quarter-Point Displacement Technique (QPDT);382
38.2.3;2.3 Displacement Extrapolation Technique (DET);383
38.2.4;2.4 Limited Displacement Extrapolation Technique (LDET);383
38.3;3 Calculation of Crack Parameters for the SCB Specimen;383
38.3.1;3.1 Mode I;383
38.3.2;3.2 Mixed Mode I/II;386
38.4;4 Calculation of Crack Parameters for the SE Specimen;389
38.5;5 Conclusions;391
38.6;References;392
39;Analysis of Mode II and Mixed Mode I-II in Fracture and Fatigue: A Numerical and Experimental Study;394
39.1;1 Introduction;395
39.2;2 Tested Material AA6082-T6;396
39.3;3 Mixed Mode Fracture with Four-Point Bending Test;397
39.4;4 Experimental Procedure;398
39.5;5 Numerical Models: Crack Propagation Path;404
39.6;6 Equivalent Stress Intensity Factor Determination;405
39.7;7 Conclusions;413
39.8;References;414
40;Joining;415
41;The Friction Weldability of AA6063 Tube to AA6082 Tube Plates Using an External Tool;416
41.1;1 Introduction;416
41.2;2 Materials and Methods;417
41.3;3 Results;423
41.4;4 Conclusion;424
41.5;References;425
42;Tribology;427
43;Study of the Texture Parameters Effects on the Anti-fingerprint Function;428
43.1;1 Introduction;428
43.2;2 Methods;429
43.2.1;2.1 Numerical Model;429
43.2.2;2.2 Design of Experiment (DoE);431
43.3;3 Results and Discussion;433
43.3.1;3.1 Contact Finger Analysis and Anti-fingerprint Function;433
43.3.2;3.2 Results from the DoE: Effect of the Texture Parameters;435
43.4;4 Conclusions;438
43.5;References;439
44;Mechanical Characterization of Film/Substrate Materials Using Nanoindentation Technique;440
44.1;1 Introduction;440
44.2;2 Analytical Model: Mercier-2010;441
44.3;3 Results;442
44.3.1;3.1 Numerical Models;442
44.3.2;3.2 Discussions;443
44.4;4 Conclusions;451
44.5;References;452
45;Forming;454
46;Limiting Drawing Ratio and Formability Behaviour of Dual Phase Steels—Experimental Analysis and Finite Element Modelling;455
46.1;1 Introduction;456
46.2;2 Material Mechanical Behaviour;457
46.3;3 Deep Drawing Cylindrical Cup Test;461
46.3.1;3.1 Limiting Drawing Ratio;462
46.3.2;3.2 Earing Profile;465
46.3.3;3.3 Numerical Simulation—FEM;468
46.4;4 Conclusions;470
46.5;References;471
47;Characterization and Formability Analysis of a Composite Sandwich Metal-Polymer Material;473
47.1;1 Introduction;474
47.2;2 Material Characterization;475
47.2.1;2.1 Tensile Test;475
47.2.2;2.2 Hydraulic Bulge Test;480
47.3;3 Formability Tests;483
47.3.1;3.1 Erichsen Test;483
47.3.2;3.2 Hole Expansion Test—KWI;485
47.4;4 Numerical Simulation—FEM;488
47.4.1;4.1 Numerical Results;489
47.5;5 Conclusions;492
47.6;References;493
48;Study on Forming Tool Module with Variable Stiffness Blank-Holder for Applications in High Strength Steel and Laser Welding Parts;495
48.1;1 Introduction;495
48.2;2 Materials and Methods;496
48.3;3 Numerical Model;498
48.4;4 Results and Discussion;499
48.5;5 Conclusions;501
48.6;References;502




