E-Book, Englisch, Band Volume 348, 404 Seiten, Web PDF
Reihe: Methods in Enzymology
E-Book, Englisch, Band Volume 348, 404 Seiten, Web PDF
Reihe: Methods in Enzymology
ISBN: 978-0-08-049696-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Cover ;1
2;Table of Contents;6
3;Contributors to Volume 348;10
4;Preface;14
5;Volume in Series;16
6;Chapter 1. Thiols in Redox Mechanism of Ribonucleotide Reductase;36
7;Chapter 2. Tyrosyl Radicals and Ribonucleotide Reductase;56
8;Chapter 3. Flavin-Dependent Sulfhydryl Oxidases in Protein Disulfide Bond Formation;65
9;Chapter 4. Analyzing Cotranslational Protein Folding and Disulfide Formation by Diagonal Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis;70
10;Chapter 5. Disulfide Reduction in Major Histocompatibility Complex Class II-Restricted Antigen Processing by Interferon-.-Inducible Lysosomal Thiol Reductase;78
11;Chapter 6. Thiol Oxidation and Reduction in Major Histocompatibility Complex Class I-Restricted Antigen Processing and Presentation;84
12;Chapter 7. Disulfide Bond Formation in Periplasm Escherichia coli;89
13;Chapter 8. Protein Disulfide Isomerase as an Enzyme and a Chaperone in Protein Folding;101
14;Chapter 9. Characterization of Redox-Active Proteins on Cell Surface;111
15;Chapter 10. Measurement of Reduction of Disulfide Bonds in Plasmin by Phosphoglycerate Kinase;122
16;Chapter 11. Redox Potential of GSH/GSSG Couple: Assay and Biological Significance;128
17;Chapter 12. Role of Yeast Flavin-Containing Monooxygenase in Maintenance of Thiol–Disulfide Redox Potential;148
18;Chapter 13. Identification of Cysteine Sulfenic Acid in AhpC of Alkyl Hydroperoxide Reductase;157
19;Chapter 14. Glutaredoxins and Oxidative Stress Defense in Yeast;171
20;Chapter 15. Quantitation of Protein Sulfinic and Sulfonic Acid, Irreversibly Oxidized Protein Cysteine Sites in Cellular Proteins;181
21;Chapter 16. c-Jun Regulation by S-Glutathionylation;192
22;Chapter 17. S-Glutathionylation of Glyceraldehyde-3-phosphate Dehydrogenase: Role of Thiol Oxidation and Catalysis by Glutaredoxin;210
23;Chapter 18. Roles of Nrf2 in Activation of Antioxidant Enzyme Genes via Antioxidant Responsive Elements;217
24;Chapter 19. Enzymatic Pathways of ß Elimination of Chemopreventive Selenocysteine Se Conjugates;226
25;Chapter 20. Gene Expression and Thiol Redox State;235
26;Chapter 21. Redox Flow as an Instrument of Gene Regulation;251
27;Chapter 22. Optical Methods for Measuring Zinc Binding and Release, Zinc Coordination Environments in Zinc Finger Proteins, and Redox Sensitivity and Activity of Zinc-Bound Thiols;265
28;Chapter 23. Metallothionein Expression and Oxidative Stress in the Brain;273
29;Chapter 24. Reversible Oxidation of HIV-2 Protease;284
30;Chapter 25. Thiol Enzymes Protecting Mitochondria against Oxidative Damage;295
31;Chapter 26. Phenylarsine Oxide Affinity Chromatography to Identify Proteins Involved in Redox Regulation: Dithiol–Disulfide Equilibrium in Serine/ Threonine Phosphatase Calcineurin;306
32;Chapter 27. Glutathione Reductase from Bovine Brain;316
33;Chapter 28. Redox-Mediated Functional and Structural Changes in Insulin Receptor Kinase;323
34;Chapter 29. Redox Regulation of Protein Tyrosine Phosphatases by Hydrogen Peroxide: Detecting Sulfenic Acid Intermediates and Examining Reversible Inactivation;332
35;Chapter 30. Protein Cross-Linking by Self-Assisted Intermolecular Disulfide Bond Formation;341
36;Chapter 31. Sulfhydryl Oxidases as Factors for Mitochondrial Biogenesis;349
37;Chapter 32. Activation of Iron Regulatory Protein-1 by Oxidative Stress;359
38;Chapter 33. Mouse Astrocyte Cultures Used to Study Antioxidant Property of Metallothionein Isoforms;372
39;Chapter 34. Model Peptide Substrates and Ligands in Analysis of Action of Mammalian Protein Disulfide-Isomerase;377
40;Chapter 35. Escherichia coli SoxR Protein: Sensor/Transducer of Oxidative Stress and Nitric Oxide;390
41;Author Index;400
42;Subject Index;428