Siegelmann | Neural Networks and Analog Computation | Buch | 978-0-8176-3949-5 | sack.de

Buch, Englisch, 181 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1030 g

Reihe: Progress in Theoretical Computer Science

Siegelmann

Neural Networks and Analog Computation

Beyond the Turing Limit
1999
ISBN: 978-0-8176-3949-5
Verlag: Birkhäuser Boston

Beyond the Turing Limit

Buch, Englisch, 181 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1030 g

Reihe: Progress in Theoretical Computer Science

ISBN: 978-0-8176-3949-5
Verlag: Birkhäuser Boston


The theoretical foundations of Neural Networks and Analog Computation conceptualize neural networks as a particular type of computer consisting of multiple assemblies of basic processors interconnected in an intricate structure. Examining these networks under various resource constraints reveals a continuum of computational devices, several of which coincide with well-known classical models. On a mathematical level, the treatment of neural computations enriches the theory of computation but also explicated the computational complexity associated with biological networks, adaptive engineering tools, and related models from the fields of control theory and nonlinear dynamics. The material in this book will be of interest to researchers in a variety of engineering and applied sciences disciplines. In addition, the work may provide the base of a graduate-level seminar in neural networks for computer science students.

Siegelmann Neural Networks and Analog Computation jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Computational Complexity.- 1.1 Neural Networks.- 1.2 Automata: A General Introduction.- 1.3 Finite Automata.- 1.4 The Turing Machine.- 1.5 Probabilistic Turing Machines.- 1.6 Nondeterministic Turing Machines.- 1.7 Oracle Turing Machines.- 1.8 Advice Turing Machines.- 1.9 Notes.- 2 The Model.- 2.1 Variants of the Network.- 2.2 The Network’s Computation.- 2.3 Integer Weights.- 3 Networks with Rational Weights.- 3.1 The Turing Equivalence Theorem.- 3.2 Highlights of the Proof.- 3.3 The Simulation.- 3.4 Network with Four Layers.- 3.5 Real-Time Simulation.- 3.6 Inputs and Outputs.- 3.7 Universal Network.- 3.8 Nondeterministic Computation.- 4 Networks with Real Weights.- 4.1 Simulating Circuit Families.- 4.2 Networks Simulation by Circuits.- 4.3 Networks versus Threshold Circuits.- 4.4 Corollaries.- 5 Kolmogorov Weights: Between P and P/poly.- 5.1 Kolmogorov Complexity and Reals.- 5.2 Tally Oracles and Neural Networks.- 5.3 Kolmogorov Weights and Advice Classes.- 5.4 The Hierarchy Theorem.- 6 Space and Precision.- 6.1 Equivalence of Space and Precision.- 6.2 Fixed Precision Variable Sized Nets.- 7 Universality of Sigmoidal Networks.- 7.1 Alarm Clock Machines.- 7.2 Restless Counters.- 7.3 Sigmoidal Networks are Universal.- 7.4 Conclusions.- 8 Different-limits Networks.- 8.1 At Least Finite Automata.- 8.2 Proof of the Interpolation Lemma.- 9 Stochastic Dynamics.- 9.1 Stochastic Networks.- 9.2 The Main Results.- 9.3 Integer Stochastic Networks.- 9.4 Rational Stochastic Networks.- 9.5 Real Stochastic Networks.- 9.6 Unreliable Networks.- 9.7 Nondeterministic Stochastic Networks.- 10 Generalized Processor Networks.- 10.1 Generalized Networks: Definition.- 10.2 Bounded Precision.- 10.3 Equivalence with Neural Networks.- 10.4 Robustness.- 11 Analog Computation.- 11.1 DiscreteTime Models.- 11.2 Continuous Time Models.- 11.3 Hybrid Models.- 11.4 Dissipative Models.- 12 Computation Beyond the Turing Limit.- 12.1 The Analog Shift Map.- 12.2 Analog Shift and Computation.- 12.3 Physical Relevance.- 12.4 Conclusions.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.