Components and Systems
Buch, Englisch, 250 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 411 g
ISBN: 978-3-030-34358-3
Verlag: Springer International Publishing
Updated throughout, major changes for this third edition include:
- coverage of advanced semiconductor laser diode structures (VCSELs and DFBs)- an extended section on fibre amplifiers and lasers- updated discussion of avalanche photodiode structures- expanded coverage of transimpedance and optical preamplifiers- new sections on free-space optical links, VLC, ethernet links, coherent detection and terabit systems
Enhanced with worked examples and end-of-chapter problem sets, the book is aimed at advanced undergraduate and graduate students in electronic engineering, optical science and applied physics, and is ideally suited for adoption as a course text.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Elektronik, Optik
- Naturwissenschaften Physik Elektromagnetismus Quantenoptik, Nichtlineare Optik, Laserphysik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
- Technische Wissenschaften Technik Allgemein Technische Optik, Lasertechnologie
Weitere Infos & Material
Preface to third edition
List of symbols
1. Introduction
1.1 Historical background
1.2 The optical communications link
2. Optical fibre
2.1 Propagation of light in a dielectric
2.1.1 The wave equation
2.1.2 Propagation parameters
2.1.3 Group velocity and material dispersion
2.2 Propagation in a planar dielectric waveguide
2.2.1 Reflection and refraction at boundaries
2.2.2 Propagation modes – ray path analysis
2.2.3 Propagation modes – modal analysis
2.2.4 Modal dispersion – ray path analysis
2.2.5 Modal dispersion – modal analysis
2.2.6 Waveguide dispersion – ray path and modal analysis
2.2.7 Numerical aperture
2.3 Propagation in optical fibres
2.3.1 Propagation in step-index optical fibres
2.3.2 Dispersion in cylindrical waveguides
2.3.3 Step-index multimode fibre
2.3.4 Step-index single-mode fibre
2.3.5 Graded-index fibre
2.4 Calculation of fibre bandwidth
2.5 Attenuation in optical fibres
2.5.1 Impurity absorption
2.5.2 Rayleigh scattering
2.5.3 Material absorption
2.5.4 Electron absorption
2.5.5 PCS and all-plastic fibres
2.6 Fibre materials and fabrication methods
2.6.1 Materials
2.6.2 Modified Chemical Vapour Deposition (MCVD)
2.6.3 Fibre drawing from a preform
2.6.4 Fibre drawing from a double crucible
2.7 Connectors and couplers
2.7.1 Optical fibre connectors
2.7.2 Optical fibre couplers
3. Optical transmitters
3.1 Semiconductor diodes
3.1.1 Intrinsic semiconductor material
3.1.2 Extrinsic semiconductor material
3.1.3 The p-n junction diode under zero bias
3.1.4 The p-n junction diode under forward bias
3.2 Light emission in semiconductors
3.2.1 Direct and indirect band-gap materials
3.2.2 Rate equations
3.3 Heterojunction semiconductor light sources
3.4 Light emitting diodes (LEDs)
3.4.1 Surface emitting LEDs
3.4.2 Edge emitting LEDs (ELEDs)
3.4.3 Spectral characteristics
3.4.4 Modulation characteristics and conversion efficiency
3.5 Semiconductor laser diodes (SLDs)
3.5.1 Stimulated emission
3.5.2 Spectral characteristics
3.5.3 Modulation capabilities
3.5.4 SLD structures
3.6 Solid-state and gas lasers
3.6.1 Nd3 +:YAG lasers
3.6.2 HeNe lasers
3.7 Light-wave modulation
3.7.1 LED drive circuits
3.7.2 SLD drive circuits
3.7.3 External modulators
3.8 Fibre lasers
4. Photodiodes
4.1 V-I characteristics of photodiodes
4.2 Photoconduction in semiconductors
4.2.1 Photon absorption in intrinsic material
4.2.2 Photon absorption in reverse-biased p-n diodes
4.3 PIN photodiodes
4.4.1 Structure
4.3.2 Depletion layer depth and punch-through voltage
4.3.3 Speed limitations
4.3.4 Photodiode circuit model
4.3.5 Long-wavelength PIN photodiodes
4.4 Avalanche photodiodes (APDs)
4.4.1 APD structures
4.4.2 Current multiplication
4.4.3 Speed limitations
4.5 Metal Semiconductor Metal (MSM) Photodiodes
4.6 Photodiode noise
4.6.1 PIN photodiode noise
4.6.2 APD noise
5. Introduction to Receiver Design
5.1 Fundamentals of noise performance
5.2 Digital receiver noise
5.2.1 Raised-cosine spectrum pulses
5.2.2 Determination of I2 and I3
5.2.3 Statistical decision theory
5.2.4 Photodiode noise
5.2.5 Timing extraction
5.3 Analogue receiver noise
5.4 Comparison of APD and PIN receivers
5.5 Measurement and prediction of receiver sensitivity
5.5.1 Measurement of receiver sensitivity
5.5.2 Prediction of receiver sensitivity
6. Preamplifier Design
6.1 High input impedance preamplifiers
6.1.1 Frequency response
6.1.2 Noise analysis
6.1.3 Dynamic range
6.1.4 Design example
6.2 Transimpedance preamplifiers
6.2.1 Frequency response
6.2.2 Noise analysis
6.2.3 Dynamic range
6.2.4 Design example
6.3 Common-collector front-end transimpedance designs
6.3.1 Frequency response
6.3.2 Noise analysis
6.3.3 Design example
6.4 Boot-strapped common-collector front-end transimpedance designs
7. Current Systems and Future Trends
7.1 System design
7.2 Current Systems
7.3 Long-haul high data rate links
7.3.1 Optical fibre transmission bands
7.3.2 Advanced modulation techniques
7.3.3 Fibre amplifiers
7.3.4 Coherent detection
7.3.5 Wideband preamplifiers
7.3.6 Optical Solitons
7.4 Free-space optical communications
7.5 Future trends
7.5.1 Fluoride based optical fibres
7.5.2 Graphene detectors
7.5.3 Optical wireless
7.5.4 Crystalline fibres
7.5.5 Spatial Division Multiplexing (SDM)
7.5.6 Passive Optical Networks (PONs)