Buch, Englisch, Band 70, 323 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 676 g
Cambridge, England, 1994 Proceedings of the Fourteenth International Workshop on Maximum Entropy and Bayesian Methods
Buch, Englisch, Band 70, 323 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 676 g
Reihe: Fundamental Theories of Physics
ISBN: 978-0-7923-3452-1
Verlag: Springer Netherlands
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Datenanalyse, Datenverarbeitung
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Naturwissenschaften Chemie Analytische Chemie
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Naturwissenschaften Physik Thermodynamik
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
Weitere Infos & Material
Applications.- Flow and diffusion images from Bayesian spectral analysis of motion-encoded NMR data.- Bayesian estimation of MR images from incomplete raw data.- Quantified maximum entropy and biological EPR spectra.- The vital importance of prior information for the decomposition of ion scattering spectroscopy data.- Bayesian consideration of the tomography problem.- Using MaxEnt to determine nuclear level densities.- A fresh look at model selection in inverse scattering.- The maximum entropy method in small-angle scattering.- Maximum entropy multi-resolution EM tomography by adaptive subdivision.- High resolution image construction from IRAS survey — parallelization and artifact suppression.- Maximum entropy performance analysis of spread-spectrum multiple-access communications.- Noise analysis in optical fibre sensing: A study using the maximum entropy method.- Algorithms.- AutoClass — a Bayesian approach to classification.- Evolution reviews of BayesCalc, a MATHEMATICA package for doing Bayesian calculations.- Bayesian inference for basis function selection in nonlinear system identification using genetic algorithms.- The meaning of the word “Probability”.- The hard truth.- Are the samples doped — If so, how much?.- Confidence intervals from one observation.- Hypothesis refinement.- Bayesian density estimation.- Scale-invariant Markov models for Bayesian inversion of linear inverse problems.- Foundations: Indifference, independence and MaxEnt.- The maximum entropy on the mean method, noise and sensitivity.- The maximum entropy algorithm applied to the two-dimensional random packing problem.- Neural Networks.- Bayesian comparison of models for images.- Interpolation models with multiple hyperparameters.- Density networks and their application to proteinmodelling.- The cluster expansion: A hierarchical density model.- The partitioned mixture distribution: Multiple overlapping density models.- Physics.- Generating functional for the BBGKY hierarchy and the N-identical-body problem.- Entropies for continua: Fluids and magnetofluids.- A logical foundation for real thermodynamics.