Shukla / Tiwari | Efficient Algorithms for Discrete Wavelet Transform | E-Book | sack.de
E-Book

E-Book, Englisch, 91 Seiten, eBook

Reihe: SpringerBriefs in Computer Science

Shukla / Tiwari Efficient Algorithms for Discrete Wavelet Transform

With Applications to Denoising and Fuzzy Inference Systems
2013
ISBN: 978-1-4471-4941-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

With Applications to Denoising and Fuzzy Inference Systems

E-Book, Englisch, 91 Seiten, eBook

Reihe: SpringerBriefs in Computer Science

ISBN: 978-1-4471-4941-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Transforms are an important part of an engineer’s toolkit for solving signal processing and polynomial computation problems. In contrast to the Fourier transform-based approaches where a fixed window is used uniformly for a range of frequencies, the wavelet transform uses short windows at high frequencies and long windows at low frequencies. This way, the characteristics of non-stationary disturbances can be more closely monitored. In other words, both time and frequency information can be obtained by wavelet transform. Instead of transforming a pure time description into a pure frequency description, the wavelet transform finds a good promise in a time-frequency description.

Due to its inherent time-scale locality characteristics, the discrete wavelet transform (DWT) has received considerable attention in digital signal processing (speech and image processing), communication, computer science and mathematics. Wavelet transforms are known to have excellent energy compaction characteristics and are able to provide perfect reconstruction. Therefore, they are ideal for signal/image processing. The shifting (or translation) and scaling (or dilation) are unique to wavelets. Orthogonality of wavelets with respect to dilations leads to multigrid representation.

The nature of wavelet computation forces us to carefully examine the implementation methodologies. As the computation of DWT involves filtering, an efficient filtering process is essential in DWT hardware implementation. In the multistage DWT, coefficients are calculated recursively, and in addition to the wavelet decomposition stage, extra space is required to store the intermediate coefficients. Hence, the overall performance depends significantly on the precision of the intermediate DWT coefficients.

This work presents new implementation techniques of DWT, that are efficient in terms of computation requirement, storage requirement, and with better signal-to-noise ratio in the reconstructed signal.
Shukla / Tiwari Efficient Algorithms for Discrete Wavelet Transform jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Introduction

Filter Banks and DWT

Finite Precision Error Modeling and Analysis

PVM Implementation of DWT-Based Image Denoising

DWT-Based Power Quality Classification

Conclusions and Future Directions



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.