Buch, Englisch, 368 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 5913 g
Buch, Englisch, 368 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 5913 g
Reihe: Advances in Computer Vision and Pattern Recognition
ISBN: 978-1-4471-6962-8
Verlag: Springer
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Mustererkennung, Biometrik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
Weitere Infos & Material
Overview and Scope.- Notation and Terminology.- Part I: The Decision Forest Model.- Introduction.- Classification Forests.- Regression Forests.- Density Forests.- Manifold Forests.- Semi-Supervised Classification Forests.- Part II: Applications in Computer Vision and Medical Image Analysis.- Keypoint Recognition Using Random Forests and Random Ferns.- Extremely Randomized Trees and Random Subwindows for Image Classification, Annotation, and Retrieval.- Class-Specific Hough Forests for Object Detection.- Hough-Based Tracking of Deformable Objects.- Efficient Human Pose Estimation from Single Depth Images.- Anatomy Detection and Localization in 3D Medical Images.- Semantic Texton Forests for Image Categorization and Segmentation.- Semi-Supervised Video Segmentation Using Decision Forests.- Classification Forests for Semantic Segmentation of Brain Lesions in Multi-Channel MRI.- Manifold Forests for Multi-Modality Classification of Alzheimer’s Disease.- Entangled Forests and Differentiable Information Gain Maximization.- Decision Tree Fields.- Part III: Implementation and Conclusion.- Efficient Implementation of Decision Forests.- The Sherwood Software Library.- Conclusions.