Shotton / Criminisi | Decision Forests for Computer Vision and Medical Image Analysis | Buch | 978-1-4471-6962-8 | sack.de

Buch, Englisch, 368 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 5913 g

Reihe: Advances in Computer Vision and Pattern Recognition

Shotton / Criminisi

Decision Forests for Computer Vision and Medical Image Analysis

Buch, Englisch, 368 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 5913 g

Reihe: Advances in Computer Vision and Pattern Recognition

ISBN: 978-1-4471-6962-8
Verlag: Springer


This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests; discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification; includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website; provides a free, user-friendly software library, enabling the reader to experiment with forests ina hands-on manner.
Shotton / Criminisi Decision Forests for Computer Vision and Medical Image Analysis jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Overview and Scope.- Notation and Terminology.- Part I: The Decision Forest Model.- Introduction.- Classification Forests.- Regression Forests.- Density Forests.- Manifold Forests.- Semi-Supervised Classification Forests.- Part II: Applications in Computer Vision and Medical Image Analysis.- Keypoint Recognition Using Random Forests and Random Ferns.- Extremely Randomized Trees and Random Subwindows for Image Classification, Annotation, and Retrieval.- Class-Specific Hough Forests for Object Detection.- Hough-Based Tracking of Deformable Objects.- Efficient Human Pose Estimation from Single Depth Images.- Anatomy Detection and Localization in 3D Medical Images.- Semantic Texton Forests for Image Categorization and Segmentation.- Semi-Supervised Video Segmentation Using Decision Forests.- Classification Forests for Semantic Segmentation of Brain Lesions in Multi-Channel MRI.- Manifold Forests for Multi-Modality Classification of Alzheimer’s Disease.- Entangled Forests and Differentiable Information Gain Maximization.- Decision Tree Fields.- Part III: Implementation and Conclusion.- Efficient Implementation of Decision Forests.- The Sherwood Software Library.- Conclusions.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.