Short-Term Load Forecasting by Artificial Intelligent Technologies | Buch | 978-3-03897-582-3 | sack.de

Buch, Englisch, 444 Seiten, Paperback, Format (B × H): 170 mm x 244 mm, Gewicht: 1130 g

Short-Term Load Forecasting by Artificial Intelligent Technologies


1. Auflage 2019
ISBN: 978-3-03897-582-3
Verlag: MDPI AG

Buch, Englisch, 444 Seiten, Paperback, Format (B × H): 170 mm x 244 mm, Gewicht: 1130 g

ISBN: 978-3-03897-582-3
Verlag: MDPI AG


In last few decades, short-term load forecasting (STLF) has been one of the most important research issues for achieving higher efficiency and reliability in power system operation, to facilitate the minimization of its operation cost by providing accurate input to day-ahead scheduling, contingency analysis, load flow analysis, planning, and maintenance of power systems. There are lots of forecasting models proposed for STLF, including traditional statistical models (such as ARIMA, SARIMA, ARMAX, multi-variate regression, Kalman filter, exponential smoothing, and so on) and artificial-intelligence-based models (such as artificial neural networks (ANNs), knowledge-based expert systems, fuzzy theory and fuzzy inference systems, evolutionary computation models, support vector regression, and so on).
Recently, due to the great development of evolutionary algorithms (EA) and novel computing concepts (e.g., quantum computing concepts, chaotic mapping functions, and cloud mapping process, and so on), many advanced hybrids with those artificial-intelligence-based models are also proposed to achieve satisfactory forecasting accuracy levels. In addition, combining some superior mechanisms with an existing model could empower that model to solve problems it could not deal with before; for example, the seasonal mechanism from the ARIMA model is a good component to be combined with any forecasting models to help them to deal with seasonal problems.

Short-Term Load Forecasting by Artificial Intelligent Technologies jetzt bestellen!

Zielgruppe


Professionals/Scholars

Weitere Infos & Material


Hong, Wei-Chiang
School of Computer Science and Technology, Jiangsu Normal University, China.

Fan, Guo-Feng
College of Mathematics & Information Science, PingDingShan University, China.

Li, Ming-Wei
College of Shipbuilding Engineering, Harbin Engineering University, China.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.