Shmulevich | Computational and Statistical Approaches to Genomics | E-Book | sack.de
E-Book

E-Book, Englisch, 329 Seiten, eBook

Shmulevich Computational and Statistical Approaches to Genomics


Erscheinungsjahr 2007
ISBN: 978-0-306-47825-3
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 329 Seiten, eBook

ISBN: 978-0-306-47825-3
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



Computational and Statistical Genomics aims to help researchers deal with current genomic challenges. Topics covered include: overviews of the role of supercomputers in genomics research, the existing challenges and directions in image processing for microarray technology, and web-based tools for microarray data analysis; approaches to the global modeling and analysis of gene regulatory networks and transcriptional control, using methods, theories, and tools from signal processing, machine learning, information theory, and control theory; state-of-the-art tools in Boolean function theory, time-frequency analysis, pattern recognition, and unsupervised learning, applied to cancer classification, identification of biologically active sites, and visualization of gene expression data; crucial issues associated with statistical analysis of microarray data, statistics and stochastic analysis of gene expression levels in a single cell, statistically sound design of microarray studies and experiments; and biological and medical implications of genomics research.
Shmulevich Computational and Statistical Approaches to Genomics jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Microarray Image Analysis and Gene Expression Ratio Statistics.- Statistical Considerations in the Assessment of cDNA Microarray Data Obtained Using Amplification.- Sources of Variation in Microarray Experiments.- Studentizing Microarray Data.- Exploratory Clustering of Gene Expression Profiles of Mutated Yeast Strains.- Selecting Informative Genes for Cancer Classification Using Gene Expression Data.- Design Issues and Comparison of Methods for Microarray-Based Classification.- Analyzing Protein Sequences Using Signal Analysis Techniques.- Statistics of the Numbers of Transcripts and Protein Sequences Encoded in the Genome.- Normalized Maximum Likelihood Models for Boolean Regression with Application to Prediction and Classification in Genomics.- Inference of Genetic Regulatory Networks Via Best-Fit Extensions.- Regularization and Noise Injection for Improving Genetic Network Models.- Parallel Computation and Visualization Tools for Codetermination Analysis of Multivariate Gene Expression Relations.- Human Glioma Diagnosis from Gene Expression Data.- Application of DNA Microarray Technology to Clinical Biopsies of Breast Cancer.- Alternative Splicing: Genetic Complexity in Cancer.- Single-Nucleotide Polymorphisms, DNA Repair, and Cancer.


Wei Zhang is an Associate Professor in the Cancer Genomics Laboratory, University of Texas M.D. Anderson Cancer Center Ilya Shmulevich is an Assistant Professor in the Cancer Genomics Laboratory, University of Texas M.D. Anderson Cancer Center.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.