Buch, Englisch, Band 7, 246 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 394 g
Buch, Englisch, Band 7, 246 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 394 g
Reihe: Lecture Notes in Applied and Computational Mechanics
ISBN: 978-3-642-53659-5
Verlag: Springer
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Technische Thermodynamik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Kontinuumsmechanik
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau
Weitere Infos & Material
I. Mixed-mode crack behavior under plane stress and plane strain small scale yielding.- 1.1 Governing equations.- 1.2 Numerical iterative method for solving the nonlinear eigenvalue problems.- 1.3 Application of J-integral to plastic stress intensity factor determination.- 1.4 Family of crack-tip fields characterized by dominating fracture mechanism.- 1.5 Finite element analysis of stress distributions at the crack tip.- 1.6 Conditions of existence for mixed mode fracture.- II. Modeling of crack growth by fracture damage zone.- 2.1 A modified strain-energy density approach.- 2.2 Strain energy density distributions.- 2.3 Fracture damage zone.- 2.4 Relation between cracks growth resistance and fracture process parameters in elastic-plastic solids.- 2.5 Elastic-plastic approach for modeling of fatigue crack behavior.- 2.6 Some aspects of the fatigue crack path prediction.- III. Experimental investigation of fatigue crack propagation.- 3.1 Specimens for study of fatigue and fracture processes and material properties.- 3.2 Method of interpretation for cyclic crack resistance characteristics.- 3.3 Effect of biaxial stress on fatigue crack growth in aluminum alloys.- 3.4 Influence of mixed mode loading on fatigue fracture of high strength steels.- 3.5 Fatigue crack growth trajectories for the aluminum alloys and steels.- IV. Models for predicting crack growth rate and fatigue life.- 4.1 Crack growth direction criterion.- 4.2 Criteria of equivalent plastic strain under a complex stress state.- 4.3 A model for predicting crack growth rate under biaxial loads.- 4.4 An analysis of crack growth under complex stress state with taking into account their orientation.- V. Practical applications.- 5.1 Fracture analysis of gas turbine engine disks and simulation modeling of operational conditions.- 5.2 Modeling fatigue crack behavior in a pressurized cylinder.- Reference.