Shimada | Disturbance Observer for Advanced Motion Control with MATLAB / Simulink | Buch | 978-1-394-17810-0 | sack.de

Buch, Englisch, 288 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 544 g

Reihe: Wiley-IEEE Press Book Series on Control Systems Theory and Applications

Shimada

Disturbance Observer for Advanced Motion Control with MATLAB / Simulink


1. Auflage 2023
ISBN: 978-1-394-17810-0
Verlag: Wiley

Buch, Englisch, 288 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 544 g

Reihe: Wiley-IEEE Press Book Series on Control Systems Theory and Applications

ISBN: 978-1-394-17810-0
Verlag: Wiley


Disturbance Observer for Advanced Motion Control with MATLAB/Simulink

A fulsome and robust presentation of disturbance observers complete with MATLAB sample programs and simulation results

In Disturbance Observer for Advanced Motion Control with MATLAB/Simulink, distinguished electronics engineer Dr. Akira Shimada delivers a comprehensive exploration of the suppression of actual and unknown disturbances. In the book, you’ll find a systematic discussion of the basic theory and design methods of disturbance observers accompanied by instructive MATLAB and Simulink simulation examples.

Included appendices cover the mathematical background of classical, modern, and digital control and ground the reader’s understanding of the more advanced sections. The included material is ideal for students enrolled in courses in advanced motion control, mechatronics system control, electrical drives, motion control, robotics, and aeronautics.

In addition to topics like model predictive control, vibration systems, acceleration control, adaptive observers, and multi-rate sampling, readers will find: - A thorough introduction to the various types of disturbance observers and the fundamentals of disturbance observers, including disturbance estimation and disturbance rejection
- Comprehensive explorations of stabilized control and coprime factorization, including the derivation of stabilizing controllers
- Practical discussions of disturbance observers in state space, including identity input disturbance observers and identity reaction force observers
- Fulsome treatments of the mathematical foundations of control theory, methods??for measuring and estimating velocities, and the disturbance estimation Kalman filter

Perfect for undergraduate and graduate students with existing knowledge of the fundamentals of control engineering who wish to learn how to design disturbance observers, Disturbance Observer for Advanced Motion Control with MATLAB/Simulink will also benefit professional engineers and researchers studying alternative control theories.

Shimada Disturbance Observer for Advanced Motion Control with MATLAB / Simulink jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


About the Author xv

Preface xvii

About the Companion Website xxi

1 Introduction of Disturbance Observer 1

1.1 Types of Disturbance Observers 1

1.1.1 Introduction 1

1.1.2 Observer and Control System Design Concepts 3

1.2 Format of Example and Use of MATLAB 4

1.2.1 Format of the Example Problem 4

1.2.2 Using MATLAB/Simulink 5

1.3 How This Book Is Organized 5

1.3.1 The Structure of This Document 5

1.3.2 How to Read This Book 6

References 7

2 Basics of Disturbance Observer 9

2.1 What Is Disturbance 9

2.2 How Disturbance Estimation Works 11

2.3 Disturbance Rejection and Acceleration Control System 13

2.3.1 Concept of Disturbance Rejection and Acceleration 13

2.3.2 Different Disturbance Observers Depending on How the Disturbance Is Captured 15

2.3.3 Basic Control System Design 16

2.4 Reaction Force Observer (RFOB) 18

2.4.1 Reaction Force Observer Design 18

2.4.2 Combined Use of DOB and RFOB 20

2.5 Internal Model and Two-degrees-of-freedom Control 24

2.5.1 Internal Model Principle 24

2.5.2 Feedforward Control 28

2.5.3 Control System with Disturbance Observer and Feedforward 29

2.6 Effect of Observation Noise and Modeling Error 31

2.6.1 Effect of Observation Noise 31

2.6.2 Effect of Modeling Error 31

2.6.3 Effect of Viscous Friction 32

2.6.4 Effect of Varying Mass 33

2.7 Real System Modeling 37

2.7.1 DC Motor Torque Control Model 37

2.7.2 Without Current Feedback 38

2.7.3 Relationship Between the Cart Model and Rotary-type Motor 38

2.8 Idea of Robust Control 39

References 41

3 Stabilized Control and Coprime Factorization 45

3.1 Coprime Factorization and Derivation of Stabilizing Controller 45

3.1.1 Derivation of Parameters for Coprime Factorization 46

3.1.2 Stabilizing Controller and Free Parameters 50

3.1.3 Double Coprime Factorization Involving Q(s) 52

3.2 Relationship with Disturbance Observer 52

3.3 Coprime Factorization and Structure of Two-degrees-of-freedom Control System 53

References 56

4 Disturbance Observer in State Space 59

4.1 Identity Input Disturbance Observer 59

4.1.1 How to Design the Identity Input Disturbance Observer in Continuous System 59

4.1.2 Controllability and State Feedback 68

4.1.3 Continuous-time Servo System with Identity Disturbance Observer 69

4.2 Identity Reaction Force Observer 72

4.3 Identity Output Disturbance Observer 75

4.4 Identity Higher Order Disturbance Observer Design 79

4.5 Minimal Order Disturbance Observer 82

4.6 Design of Periodic Disturbance Observer 89

4.7 Observability and Noninput/Output Disturbances 94

4.7.1 Mathematical Model of a DC Motor 94

4.7.2 DC Motor Observable Matrix and Rank 95

4.7.3 Observability of Disturbance Estimation 97

4.7.4 Noninput/Output Disturbance Observer and Control 97

References 100

5 Digital Disturbance Observer Design 101

5.1 Identity Digital Disturbance Observer Design 101

5.2 Confirmation of Separation Theorem 108

5.3 Minimal Order Digital Disturbance Observer 109

5.4 Identity High-order Digital Disturbance Observer 119

References 122

6 Disturbance Observer of Vibrating Systems 123

6.1 Modeling of the Two-inertia System 123

6.2 Vibration Suppression Control in Transfer Function Representation 126

6.3 Disturbance Observer and Stabilization for Two-inertia Systems 129

6.3.1 Observer to Estimate Input Shaft Disturbance td1 129

6.3.2 Observer to Estimate Output Shaft Disturbance td2 132

6.4 Servo System with DOB for Two-inertia Systems 135

6.4.1 Input Shaft Servo System Considering Input Shaft Disturbance td1 136

6.4.2 Output Shaft Servo Sy


Akira Shimada, received his PhD. in Engineering from Keio University, Japan, in 1996. He is a Full Professor at Shibaura Institute of Technology, Japan, and has previously been a guest Professor at Chiba University and an Associate Professor at the Polytechnic University, Japan. His current interests include motion control, robotics, control engineering, and free climbing and he is a member of IEEE, SICE, RSJ, and a Senior Member of IEEJ.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.