Shi / Choi | Gaussian Process Regression Analysis for Functional Data | Buch | 978-1-4398-3773-3 | sack.de

Buch, Englisch, 216 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 496 g

Shi / Choi

Gaussian Process Regression Analysis for Functional Data


1. Auflage 2011
ISBN: 978-1-4398-3773-3
Verlag: Chapman and Hall/CRC

Buch, Englisch, 216 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 496 g

ISBN: 978-1-4398-3773-3
Verlag: Chapman and Hall/CRC


Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.

Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dimensional data and variable selection. The remainder of the text explores advanced topics of functional regression analysis, including novel nonparametric statistical methods for curve prediction, curve clustering, functional ANOVA, and functional regression analysis of batch data, repeated curves, and non-Gaussian data.

Many flexible models based on Gaussian processes provide efficient ways of model learning, interpreting model structure, and carrying out inference, particularly when dealing with large dimensional functional data. This book shows how to use these Gaussian process regression models in the analysis of functional data. Some MATLAB® and C codes are available on the first author’s website.

Shi / Choi Gaussian Process Regression Analysis for Functional Data jetzt bestellen!

Zielgruppe


Researchers and graduate students in statistics, computer science, medicine, and engineering.

Weitere Infos & Material


Introduction. Bayesian Nonlinear Regression with Gaussian Process Priors. Inference and Computation for Gaussian Process Regression Model. Covariance Function and Model Selection. Functional Regression Analysis. Mixture Models and Curve Clustering. Generalized Gaussian Process Regression for Non-Gaussian Functional Data. Some Other Related Models. Appendices. Bibliography. Index.


Jian Qing Shi, Ph.D., is a senior lecturer in statistics and the leader of the Applied Statistics and Probability Group at Newcastle University. He is a fellow of the Royal Statistical Society and associate editor of the Journal of the Royal Statistical Society (Series C). His research interests encompass functional data analysis using covariance kernel, incomplete data and model uncertainty, and covariance structural analysis and latent variable models.

Taeryon Choi, Ph.D., is an associate professor of statistics at Korea University. His research mainly focuses on the use of Bayesian methods and theory for various scientific problems.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.