Buch, Englisch, Band 41, 208 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 347 g
A Stochastic Perspective
Buch, Englisch, Band 41, 208 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 347 g
Reihe: Studies in Systems, Decision and Control
ISBN: 978-3-319-36911-2
Verlag: Springer International Publishing
This book explores event-based estimation problems. It shows how several stochastic approaches are developed to maintain estimation performance when sensors perform their updates at slower rates only when needed.
The self-contained presentation makes this book suitable for readers with no more than a basic knowledge of probability analysis, matrix algebra and linear systems. The introduction and literature review provide information, while the main content deals with estimation problems from four distinct angles in a stochastic setting, using numerous illustrative examples and comparisons. The text elucidates both theoretical developments and their applications, and is rounded out by a review of open problems.
This book is a valuable resource for researchers and students who wish to expand their knowledge and work in the area of event-triggered systems. At the same time, engineers and practitioners in industrial process control will benefit from the event-triggering technique that reduces communication costs and improves energy efficiency in wireless automation applications.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Regelungstechnik
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Systemtheorie
- Technische Wissenschaften Energietechnik | Elektrotechnik Elektrotechnik
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
Weitere Infos & Material
Introduction.- Linear Gaussian Systems and Event-Based State Estimation.- Event-Triggered Sampling.- Approximate Optimal Filtering Approaches.- Constrained Optimization Approach.- Set-Valued Filtering Approach.- Probabilistic Approach.- Communications Rate Analysis.- Open Problems.- Appendices: Brief Review of Probability Theory; Linear Estimation Theory.