Shi / Chakraborty / Kar | Intelligence Science III | E-Book | sack.de
E-Book

E-Book, Englisch, Band 623, 317 Seiten, eBook

Reihe: IFIP Advances in Information and Communication Technology

Shi / Chakraborty / Kar Intelligence Science III

4th IFIP TC 12 International Conference, ICIS 2020, Durgapur, India, February 24–27, 2021, Revised Selected Papers
Erscheinungsjahr 2021
ISBN: 978-3-030-74826-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

4th IFIP TC 12 International Conference, ICIS 2020, Durgapur, India, February 24–27, 2021, Revised Selected Papers

E-Book, Englisch, Band 623, 317 Seiten, eBook

Reihe: IFIP Advances in Information and Communication Technology

ISBN: 978-3-030-74826-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book constitutes the refereed post-conference proceedings of the 4th International Conference on Intelligence Science, ICIS 2020, held in Durgapur, India, in February 2021 (originally November 2020).The 23 full papers and 4 short papers presented were carefully reviewed and selected from 42 submissions. One extended abstract is also included. They deal with key issues in brain cognition; uncertain theory; machine learning; data intelligence; language cognition; vision cognition; perceptual intelligence; intelligent robot; and medical artificial intelligence.
Shi / Chakraborty / Kar Intelligence Science III jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Brain Cognition.- Mind Modeling in Intelligence Science.- Some Discussions on Subjectivity of Machine and its Function.- Hexagon of Intelligence.- Uncertain Theory.- Interactive Granular Computing Model for Intelligent Systems.- A framework for the approximation of relations.- Logical treatment of incomplete/uncertain information relying on different systems of rough sets.- Possibility theory and possibilistic logic: Tools for reasoning under and about incomplete information.- Machine Learning.- Similarity-based Rough Sets with Annotation Using Deep Learning.- P-T Probability Framework and Semantic Information G Theory Tested by Seven Difficult Tasks.- Trilevel Multi-Criteria Decision Analysis based on Three-Way Decision.- Recurrent Self-evolving Takagi–Sugeno–Kan Fuzzy Neural Network (RST-FNN) based Type-2 Diabetic Modeling.- Granulated Tables with Frequency by Discretization and Their Application.- Data Intelligence.- Person Authentication by Gait Datafrom Smartphone Sensors using Convolutional Autoencoder.- Research on Personal Credit Risk Assessment Model Based on Instance-based Transfer Learning.- Language Cognition.- From Texts to Classification Knowledge.- ANAS: Sentence similarity calculation based on automatic neural architecture search.- Fully interval integer transhipment problem- A solution approach.- Vision Cognition.- Novel image compression and deblockingapproach using BPN and Deep neural network architecture.- Characterization of Orderly Behavior of Human Crowd in Videos Using Deep Learning.- Perceptual Intelligence.- Stability Analysis of Imprecise Prey-Predator Model.- Comparative Performance Study on Human Activity Recognition with Deep Neural Networks.- Intelligent Robot.- Beam and Ball Plant System Controlling Using Intuitionistic Fuzzy Control.- Application of pinching method to quantify sensitivity of reactivity coefficients on power defect.- Computation with Democracy An IntelligentSystem.- Medical Artificial Intelligence.- Economy and Unemployment Due to COVID19 Secondary ResearchL.- Optimal Control of Dengue-Chikungunya Co-infection: A mathematical Study.- Comparative analysis of machine learning algorithms for categorizing eye diseases.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.