Sheridan | Analysis, Design and Evaluation of Man-Machine Systems 1995 | E-Book | sack.de
E-Book

E-Book, Englisch, 373 Seiten, Web PDF

Reihe: IFAC Postprint Volume

Sheridan Analysis, Design and Evaluation of Man-Machine Systems 1995


1. Auflage 2014
ISBN: 978-1-4832-9698-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 373 Seiten, Web PDF

Reihe: IFAC Postprint Volume

ISBN: 978-1-4832-9698-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



The series of IFAC Symposia on Analysis, Design and Evaluation of Man-Machine Systems provides the ideal forum for leading researchers and practitioners who work in the field to discuss and evaluate the latest research and developments. This publication contains the papers presented at the 6th IFAC Symposium in the series which was held in Cambridge, Massachusetts, USA.

Sheridan Analysis, Design and Evaluation of Man-Machine Systems 1995 jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Analysis, Design and Evaluation of Man-Machine Systems 1995;2
3;Copyright Page;3
4;Table of Contents;6
5;CHAPTER 1. A NEW HUMAN-COMPUTER-INTERFACE FOR HIGH-SPEED-MAGLEV TRAIN TRAFFIC SUPERVISION;14
5.1;1. INTRODUCTION;14
5.2;2. EXISTING INTERFACES;14
5.3;3. INCONVENIENCE OF EXISTING HCIs;15
5.4;4. A NEW DESIGN APPROACH;15
5.5;5. DESIGN PROCESS;16
5.6;6. USE OF AN INTELLIGENT ASSISTANT SYSTEM;16
5.7;7. PRESENTATION OF NEW DESIGN IDEAS;16
5.8;8. CONFLICT DIAGRAM;18
5.9;9. DISPATCHERS WORKING AREA;18
5.10;10. CONCLUSION;19
5.11;AKNOWLEDGEMENTS;19
5.12;REFERENCES;19
6;CHAPTER 2. ADVANTAGES OF MASS-DATA-DISPLAYS IN PROCESS S&C;20
6.1;1. INTRODUCTON;20
6.2;2. THE "MASS-DATA-DISPLAY" (MDD);20
6.3;3. EXPERIMENTS;22
6.4;4. INTEGRATION OF MDD'S IN CONTROL ROOM DESIGN;24
6.5;5. CONCLUSION;25
6.6;REFERENCES;25
7;CHAPTER 3. A GENERIC TASK FRAMEWORK FOR INTERFACE ANALYSIS AND DESIGN IN PROCESS CONTROL;26
7.1;1. INTRODUCTION;26
7.2;2. DEFINITION OF THE GTs;26
7.3;3. THE MAD FORMALISM;27
7.4;4. EXPRESSING THE GTs' SYNTAX WITH MAD;27
7.5;5. EXAMPLE APPLICATION;29
7.6;6. CONCLUSION;30
7.7;7. ACKNOWLEDGEMENTS;31
7.8;8. REFERENCES;31
8;CHAPTER 4. NEW VISUALISATION TECHNIQUES FOR INDUSTRIAL PROCESS CONTROL;32
8.1;1. INTRODUCTION;32
8.2;2. CEMENT MILLING PLANT;32
8.3;3. MULTILEVEL FLOW MODELLING;33
8.4;4. MFM MODEL FOR THE CEMENT MILL;34
8.5;5. ECOLOGICAL INTERFACE DESIGN;34
8.6;6. ENERGY AND MASS MANAGEMENT WITH EID;35
8.7;7. DESIGN OF THE MMI;36
8.8;8. IMPLEMENTATION;36
8.9;9. DISCUSSION;36
8.10;10. REFERENCES;37
9;CHAPTER 5. A PROPOSAL TO DEFINE AND TO TREAT ALARMS IN A SUPERVISION ROOM;38
9.1;1. INTRODUCTON;38
9.2;2. THE HUMAN OPERATOR IN A SUPERVISION ROOM;38
9.3;3. THE DESIGN OF SUPERVISION IMAGERIES;39
9.4;4. ALARMS;40
9.5;5. THE INCONVENIENCES OF CLASSICAL ALARMS PROCESSING SYSTEMS;40
9.6;6. SPECIFICATIONS FOR THE DESIGN AND THE PROCESSING OF ALARMS;41
9.7;7. ALARM DESIGN AND FMEA;41
9.8;8. CONCLUSION;43
9.9;9. REFERENCES;43
10;CHAPTER 6. REINFORCEMENT LEARNING AND DYNAMIC PROGRAMMING;44
10.1;1. INTRODUCTION;44
10.2;2. THE CONVENTIONAL APPROACH;45
10.3;3. APPROXIMATING DYNAMIC PROGRAMMING;46
10.4;4. CONCLUSION;48
10.5;5. ACKNOWLEDGEMENTS;48
10.6;6. REFERENCES;48
11;CHAPTER 7. THE MODULAR ORGANIZATION OF MOTOR CONTROL: WHAT FROGS CAN TEACH US ABOUT ADAPTIVE LEARNING;50
11.1;1. INTRODUCTION;50
11.2;2. THE MODULAR ORGANIZATION OF THE FROG'S SPINAL CORD;50
11.3;3. ENDPOINT SUMMATION AND KINEMATIC REDUNDANCY;51
11.4;4. FIELD APPROXIMATION;52
11.5;5. ADAPTIVE CONTROL;53
11.6;6. CONCLUSION;55
11.7;7. REFERENCES;55
12;CHAPTER 8. TRAJECTORY LEARNING AND CONTROL MODELS: FROM HUMAN TO ROBOTIC ARMS;56
12.1;1. INTRODUCTION;56
12.2;2. TRAJECTORY PLANNING AND MODIFICATION;56
12.3;3. MOTOR EXECUTION AND ADAPTATION;58
12.4;4. NEURAL NETWORK MODELS OF MOTOR LEARNING;60
12.5;5. CONCLUSION;61
12.6;6. REFERENCES;61
13;CHAPTER 9. LEARNING TO OPTIMIZE PERFORMANCE: LESSONS FROM A NEURAL CONTROL SYSTEM;62
13.1;1. INTRODUCTION;62
13.2;2. COGNITIVE AND CONTROL PROCESSES IN THE BRAIN;62
13.3;3. THE RESPIRATORY SYSTEM AS A HUMAN-MACHINE SYSTEM;63
13.4;4. OPTIMIZATION BEHAVIOR OF THE RESPIRATORY SYSTEM;65
13.5;5. REINFORCEMENT LEARNING IN RESPIRATORY CONTROL;67
13.6;CONCLUSIONS;67
13.7;ACKNOWLEDGEMENT;67
13.8;REFERENCES;67
14;CHAPTER 10. PERCEPTION OF COHERENCE OF VISUAL AND VESTIBULAR VELOCITY DURING ROTATIONAL MOTION;68
14.1;1. INTRODUCTION;68
14.2;2. METHODS;69
14.3;3. THE CONCEPT OF PMC;70
14.4;4. RESULTS;70
14.5;5. DISCUSSION;72
14.6;6. REFERENCES;73
15;CHAPTER 11. HUMAN OPERATOR ADAPTATION TO A NEW VISUO-MANUAL RELATIONSHIP;74
15.1;1. INTRODUCTION;74
15.2;2. METHODS;75
15.3;3. RESULTS;76
15.4;4. DISCUSSION;78
15.5;ACKNOWLEDGEMENTS;79
15.6;REFERENCES;79
16;CHAPTER 12. GRAPHIC COMMUNICATION AND HUMAN ERRORS IN A VIBRATORY ENVIRONMENT;80
16.1;1. PROBLEMATICS AND METHODOLOGY;80
16.2;2. DESCRIPTION OF THE EXPERIMENT;80
16.3;3. RESULTS;83
16.4;4. DISCUSSION AND CONCLUSION;85
16.5;ACKNOWLEDGMENTS;85
16.6;REFERENCES;85
17;CHAPTER 13. APIIS: A METHOD FOR ANALYSIS AND PROTOTYPING INTERACTION INTENSE SOFTWARE;86
17.1;1. INTRODUCTION;86
17.2;2. APIIS;87
17.3;3. CONCLUSIONS;90
17.4;4. REFERENCES;91
18;CHAPTER 14. INTEGRATION OF COGNITIVE ERGONOMICS CONCEPTS IN KNOWLEDGE BASED SYSTEM DEVELOPMENT METHODOLOGIES;92
18.1;1. INTRODUCTION;92
18.2;2. KBS METHODOLOGIES;92
18.3;3. INTERACTIVE METHODOLOGY FOR KBS DEVELOPMENT;93
18.4;4. INDUSTRIAL APPLICATION;95
18.5;5. CONCLUSION;97
18.6;REFERENCES;97
19;CHAPTER 15. HUMAN-COMPUTER INTERFACE EVALUATION IN INDUSTRIAL COMPLEX SYSTEMS: A REVIEW OF USABLE TECHNIQUES;98
19.1;1. INTRODUCTION;98
19.2;2. EVALUATION PRINCIPLE;98
19.3;3. REVIEW OF USABLE EVALUATION TECHNIQUES;99
19.4;4. CONCLUSION;102
19.5;REFERENCES;102
20;CHAPTER 16. USABILITY EVALUATION: AN EMPIRICAL VALIDATION OF DIFFERENT MEASURES TO QUANTIFY INTERFACE ATTRIBUTES;104
20.1;1. INTRODUCTION;104
20.2;2. A DESCRIPTIVE CONCEPT OF INTERACTION POINTS;104
20.3;3. FOUR QUANTITATIVE MEASURES OF INTERFACE ATTRIBUTES;106
20.4;4. RESULTS AND DISCUSSION;107
20.5;5. CONCLUSION;108
20.6;ACKNOWLEDGEMENTS;108
20.7;REFERENCES;108
21;CHAPTER 17. SUPPORTABILITY-BASED DESIGN RATIONALE;110
21.1;1. INTRODUCTION;110
21.2;2. GROUP WORK DURING THE LIFE CYCLE OF COMPLEX SYSTEMS;111
21.3;3. USER-ORIENTED DESIGN RATIONALE;112
21.4;4. A CASE STUDY;113
21.5;5. DISCUSSION AND FUTURE DIRECTIONS;114
21.6;ACKNOWLEDGMENTS;115
21.7;REFERENCES;115
22;CHAPTER 18. A PROBABILISTIC METHODOLOGY FOR THE EVALUATION OF ALERTING SYSTEM PERFORMANCE;118
22.1;1. INTRODUCTION;118
22.2;2. ALERTING SYSTEM MODEL;119
22.3;3. PROBABILISTIC ANALYSIS METHOD;119
22.4;4. EXAMPLE APPLICATION OF THE METHODOLOGY;121
22.5;5. CONCLUSION;123
22.6;ACKNOWLEDGMENT;123
22.7;REFERENCES;123
23;CHAPTER 19. APPLICATION OF THE ANALYTIC HIERARCHY PROCESS FOR MAKING SUBJECTIVE COMPARISONS BETWEEN MULTIPLE AUTOMATION/DISPLAY OPTIONS;124
23.1;1. INTRODUCTION;124
23.2;2. METHODOLOGY;124
23.3;3. CONCLUSION;127
23.4;REFERENCES;128
24;CHAPTER 20. INTENSIVE TASK ANALYSIS AND EVALUATION FOR INTERFACES DESIGN IN LARGE-SCALE SYSTEMS;130
24.1;1. INTRODUCTION;130
24.2;2. HIERARCHICAL TASK ANALYSIS FOR SYSTEMS INTERFACE DESIGN;130
24.3;3. INTENSIVE STRATEGIES FOR TASK ANALYSIS AND -EVALUATION;131
24.4;4. EXAMPLE FROM CEMENT INDUSTRY;132
24.5;5. CONCLUSIONS;133
24.6;6. REFERENCES;133
25;CHAPTER 21. MEDIATION OF MENTAL MODELS IN PROCESS CONTROL THROUGH A HYPERMEDIA MAN-MACHINE INTERFACE;136
25.1;1. INTRODUCTION;136
25.2;2. LEARNING OF COMPLEX SYSTEMS: A DESTILLATION COLUMN;136
25.3;3. MENTAL MODELS AS A PREREQUISITE FOR PROCESS CONTROL;137
25.4;4. DIFFERENT MODELS OF THE PROCESS;138
25.5;5. USING HYPERMEDIA FOR MAN-MACHINE INTERFACES IN PROCESS CONTROL;138
25.6;6. HYPERMEDIA - BASED INTERFACES AS LEARNING ENVIRONMENTS;138
25.7;7. IMPLEMENTATON CONCEPT OF THE INFO SYSTEM;140
25.8;8. CONCLUSION;140
25.9;REFERENCES;141
26;CHAPTER 22. REAL TIME EXPERT SYSTEM IN PROCESS CONTROL : INFLUENCE OF PRIMARY DESIGN CHOICES.;142
26.1;1. INTRODUCTION;142
26.2;2. CONTEXT OF THE RESEARCH;143
26.3;3. METHOD;143
26.4;4. RESULTS : COMPARISON OF THE TWO SITUATIONS;144
26.5;DISCUSSION;146
26.6;CONCLUSION;146
26.7;REFERENCES;147
27;CHAPTER 23. MODELING CARDRIVING AND ROAD TRAFFIC;148
27.1;1 Introduction;148
27.2;2 Model analysis of driving tasks;148
27.3;3 Adaptive driver behavior;150
27.4;4 Simulation results;151
27.5;5 Concluding remarks;152
27.6;References;152
28;CHAPTER 24. AN ESTIMATION OF THE HAZARD-CONTROLLABILITY OF DRIVER-SUPPORT SYSTEMS;154
28.1;1. INTRODUCTION;154
28.2;2. DRIVER SUPPORT SYSTEMS (DSSs);155
28.3;3. HAZARD IDENTIFICATION AND HAZARD-RESTRAINT STRUCTURES;155
28.4;4. DEVELOPMENT OF CAUSAL MODELS;155
28.5;5. ANALYSIS OF CAUSAL MODELS;157
28.6;6. ESTIMATION OF HAZARDCONTROLLABILITY OF DSSs;158
28.7;7. SUMMARY AND CONCLUSIONS;159
28.8;REFERENCES;159
29;CHAPTER 25. DAISY - A DRIVER ASSISTING SYSTEM WHICH ADAPTS TO THE DRIVER;160
29.1;1. DAISY ARCHITECTURE;160
29.2;2. DESIGN OF THE BEHAVIOURAL DRIVER MODEL;162
29.3;3. CONCLUSION;165
29.4;REFERENCES;165
30;CHAPTER 26. CAR-FOLLOWING MEASUREMENTS, SIMULATIONS, AND A PROPOSED PROCEDURE FOR EVALUATING SAFETY;166
30.1;1. INTRODUCTION;166
30.2;2. FIELD MEASUREMENTS;167
30.3;3. SIMULATOR TEST;168
30.4;4. PROPOSED PROCEDURE FOR EVALUATING THE SAFETY OF CAR-FOLLOWING;170
30.5;5. CONCLUSIONS;171
30.6;6. REFERENCES;171
31;CHAPTER 27. HUMAN-MACHINE ORGANIZATION STUDY THE CASE OF THE AIR TRAFFIC CONTROL;172
31.1;1. INTRODUCTION;172
31.2;2. HUMAN-MACHINE SYSTEM MODELING;173
31.3;3. COMMAND SYSTEM ORGANIZATION;174
31.4;4. THE AIR TRAFFIC CONTROL CASE;175
31.5;5. CONCLUSION;177
31.6;ACKNOWLEDGEMENTS;177
31.7;REFERENCES;177
32;CHAPTER 28. DESIGN AND EVALUATION OF AN ATC-DISPLAY IN MODERN GLASS COCKPIT;178
32.1;1. INTRODUCTION;178
32.2;2. RESEARCH CAPABILITIES;178
32.3;3. METHOD;179
32.4;4. ATC MESSAGE DISPLAY;180
32.5;5. CREW PROCEDURE;180
32.6;6. RESULTS;180
32.7;7. CONCLUSION;182
32.8;REFERENCES;182
33;CHAPTER 29. ANALYSIS AND MODELING OF FLIGHT CREW PERFORMANCE IN AUTOMATED AIR TRAFFIC MANAGEMENT SYSTEMS;184
33.1;1. INTRODUCTION;184
33.2;2. CENTER TRACON AUTOMATION SYSTEM (CTAS);184
33.3;3. HUMAN PERFORMANCE MODEL;185
33.4;4. EMPIRICAL STUDY AND MODEL ANALYSES;187
33.5;5. RESULTS;187
33.6;6. DISCUSSION;188
33.7;REFERENCES;188
34;CHAPTER 30. ENHANCED VISUAL DISPLAYS FOR AIR TRAFFIC CONTROL COLLISION PREDICTION;190
34.1;1. INTRODUCTION;190
34.2;2. DESIGN OF EXPERIMENT 1;191
34.3;3. RESULTS OF EXPERIMENT 1;192
34.4;4. DESIGN OF EXPERIMENT 2;193
34.5;5. RESULTS OF EXPERIMENT 2;194
34.6;6. FINAL EXPERIMENTS AND RESULTS;195
34.7;7. CONCLUDING REMARKS;195
34.8;8. ACKNOWLEDGEMENTS;195
34.9;9. REFERENCES;195
35;CHAPTER 31. CONTROLLER-HUMAN INTERFACE DESIGN FOR THE FINAL APPROACH SPACING TOOL;196
35.1;1. INTRODUCTION;196
35.2;2. CONCLUSION;201
35.3;REFERENCES;201
36;CHAPTER 32. INTEGRATING THE WORK FORCE INTO THE DESIGN OF PRODUCTION SYSTEMS;202
36.1;1. INTRODUCTION;202
36.2;2. BACKGROUND;202
36.3;3. COLLABORATIVE DESIGN;203
36.4;4. CASE STUDY: THE CUSTOM WOOD WORKING INDUSTRY;203
36.5;5. THE COLLABORATIVE DESIGN PROCESS;204
36.6;6. THE NATIONAL INSTITUTE FOR STANDARDS AND TECHNOLOGY (NIST);205
36.7;7. CONCLUSIONS;206
36.8;REFERENCES;206
37;CHAPTER 33. AN ADAPTIVE TROUBLESHOOTING MODEL FOR COMPLEX AND DYNAMIC SYSTEM;208
37.1;1. INTRODUCTION;208
37.2;2. NEURO-FUZZY MODEL FOR THE DIAGNOSTIC PROCESS;209
37.3;3. TASK EXPERIMENT;210
37.4;4. CONCLUSION;210
37.5;References;211
38;CHAPTER 34. AN ORIGINAL "HUMAN-ORIENTED" ASSESSMENT APPROACH OF DESIGN METHODS FOR AUTOMATED MANUFACTURING SYSTEMS;212
38.1;INTRODUCTION;212
38.2;1. THE "AMSD" DESIGN METHOD;212
38.3;2. VALIDATION APPROACH;213
38.4;3. RESULTS;215
38.5;5. CONCLUSION;217
38.6;REFERENCES;217
39;CHAPTER 35. FROM FIELD-BASED STUDIES TO MODELS TO DECISION AIDS - AN APPROACH FOR SUPPORTING HUMAN DECISION-MAKING IN ADVANCED MANUFACTURING SYSTEMS;218
39.1;1. INTRODUCTION;218
39.2;2. THE CONTEXT: ELECTRONIC ASSEMBLY SYSTEMS;219
39.3;3. THE METHODOLOGY;220
39.4;4. SUMMARY;222
39.5;REFERENCES;222
40;CHAPTER 36. Modeling Human Performance of Intermittent Contact Tasks;224
40.1;1. INTRODUCTION;224
40.2;2. MATERIALS AND METHODS;225
40.3;3. RESULTS;227
40.4;4. CONCLUSION;229
40.5;ACKNOWLEDGMENTS;229
40.6;5. REFERENCES;229
41;CHAPTER 37. ANALYSIS OF THE HUMAN OPERATOR CONTROLLING A TELEOPERATED MICROSURGICAL ROBOT;230
41.1;1. INTRODUCTION;230
41.2;2. HUMAN OPERATOR SYSTEM;231
41.3;3· METHODS;231
41.4;4· RESULTS;232
41.5;5. CONCLUSIONS;233
41.6;ACKNOWLEDGEMENTS;234
41.7;REFERENCES;234
42;CHAPTER 38. A MODEL OF THE ARM'S NEUROMUSCULAR SYSTEM FOR MANUAL CONTROL;236
42.1;1. INTRODUCTION;236
42.2;2. MODEL DESCRIPTION;237
42.3;3. EXPERIMENTS;238
42.4;4. CONCLUSIONS;241
42.5;5. REFERENCES;241
43;CHAPTER 39. APPLYING VIRTUAL REALITY TO DIAGNOSIS AND THERAPY OF SENSORIMOTOR DISTURBANCES;242
43.1;1. INTRODUCTION;242
43.2;2. MOTION RECORDING;243
43.3;3. HAND/ARM MODELLING;243
43.4;4. MOTION ANALYSIS;243
43.5;5. MOTION TASKS;244
43.6;6. CONCLUSION;246
43.7;7. REFERENCES;246
44;CHAPTER 40. STUDY OF HUMAN OPERATION OF A POWER DRILL;248
44.1;INTRODUCTION;248
44.2;1. STABILITY ANALYSIS OF DRILLING TASK;249
44.3;2. METHODS;249
44.4;3. RESULTS;250
44.5;4. CONCLUSIONS;252
44.6;REFERENCES;253
44.7;ACKNOWLEDGMENTS;253
45;CHAPTER 41. INTERMITTENCY OF UNIMPAIRED AND AMPUTEE ARM MOVEMENTS;254
45.1;1. INTRODUCTION;254
45.2;2. A "CLASSIC" EXPERIMENT TO MEASURE ARM PERFORMANCE;255
45.3;3. CAUSES OF INTERMITTENT BEHAVIOR;256
45.4;4. UTILITY OF INTERMITTENCY;257
45.5;5. CONCLUSION;258
45.6;6. REFERENCES;258
46;CHAPTER 42. ECOLOGICAL INTERFACE DESIGN: A RESEARCH OVERVIEW;260
46.1;1. INTRODUCTION;260
46.2;2. ECOLOGICAL INTERFACE DESIGN;260
46.3;3. LITERATURE REVIEW;261
46.4;4. TECHNOLOGY TRANSFER TO INDUSTRY;264
46.5;5. FUTURE RESEARCH;264
46.6;ACKNOWLEDGEMENTS;265
46.7;REFERENCES;265
47;CHAPTER 43. DEVELOPMENT OF ANALYSIS SUPPORT SYSTEM FOR MAN-MACHINE SYSTEM DESIGN INFORMATION;266
47.1;1. INTRODUCTION;266
47.2;2. DISTRIBUTED SIMULATION SYSTEM;267
47.3;3. OPERATOR SIMULATOR;267
47.4;4. CONCLUSION;271
47.5;REFERENCES;271
48;CHAPTER 44. A DESIGN METHOD FOR INCORPORATING HUMAN JUDGMENT INTO MONITORING SYSTEMS;272
48.1;1. INTRODUCTION;272
48.2;2. NON-HOMOGENEOUS MONITORING SYSTEMS;272
48.3;3. BAYESIAN PROBABILISTIC APPROACH;273
48.4;4. DEMPSTER-SHAFER THEORETICAL APPROACH;275
48.5;5. CONCLUSIONS;277
48.6;6. REFERENCES;277
49;CHAPTER 45. TOOD : TASK OBJECT ORIENTED DESCRIPTION FOR ERGONOMIC INTERFACES SPECIFICATION;278
49.1;1. INTRODUCTION;278
49.2;2. USERS' TASKS DESCRIPTION : "EXTERNAL MODEL";279
49.3;3. USER INTERFACE SPECIFICATION : "INTERNAL MODEL";280
49.4;4. CONCLUSION;283
49.5;5. REFERENCES;283
50;CHAPTER 46. EVALUATION OF TWO HUMAN OPERATOR MODELS OF THE NAVIGATOR'S BEHAVIOUR;284
50.1;1. INTRODUCTION;284
50.2;2. OVERVIEW OF THE MODELS;285
50.3;3. VALIDATION EXPERIMENTS;286
50.4;4. AN EXAMPLE;286
50.5;5. DISCUSSION OF THE RESULTS;288
50.6;6. CONCLUSION;290
50.7;REFERENCES;290
51;CHAPTER 47. OBSERVATION IN MARITIME EMERGENCY MANAGEMENT;292
51.1;1. INTRODUCTION;292
51.2;2. METHOD;293
51.3;3. RESULTS;294
51.4;4. DISCUSSION;296
51.5;5. PERSPECTIVE;297
51.6;6. REFERENCES;297
52;CHAPTER 48. LOOP-SHAPING CHARACTERISTICS OF A HUMAN OPERATOR IN A COMPENSATORY MANUAL CONTROL SYSTEM;298
52.1;1. INTRODUCTION;298
52.2;2. COMPENSATORY MANUAL CONTROL SYSTEM AND CLASSICAL RESULTS;298
52.3;3. LOOP-SHAPING CHARACTERISTICS OF A OPERATOR AND OTHER NEW OBSERVATIONS;299
52.4;4. SYNTHESIS OF MANUAL CONTROL SYSTEM AND EXPERIMENTS;301
52.5;5. CONCLUSIONS;302
52.6;ACKNOWLEDGMENT;302
52.7;REFERENCES;302
53;CHAPTER 49. HOW DO INDUSTRY DESIGN ASSEMBLY SYSTEMS A CASE STUDY;304
53.1;1. INTRODUCTION;304
53.2;2. THE METHOD OF RESEARCH;305
53.3;3. THE SYSTEM DESIGN PROCESS;305
53.4;4. DISCUSSIONS;308
53.5;5. CONCLUSIONS;309
53.6;6. ACKNOWLEDGEMENT;309
53.7;REFERENCES;309
54;CHAPTER 50. SUPPORT IN SETTING FEED RATES AND CUTTING SPEEDS FOR CNC MACHINE TOOLS THROUGH OVERRIDE LOGGING: PRACTICAL TEST RESULTS WITH A NEW CNC COMPONENT;310
54.1;1. DESCRIPTION OF THE PROBLEM;310
54.2;2. GOALS;311
54.3;3. PROCEDURE;311
54.4;4. A TECHNICAL CONCEPT FOR OVERRIDE LOGGING;312
54.5;5. RESULTS OF THE BASIC ANALYSIS OF WORK ACTION;312
54.6;6. RESULTS OF THE PRACTICAL TESTS;313
54.7;7. CONCLUSION AND ASSESSMENT OF THE RESULTS;315
54.8;REFERENCES;315
55;CHAPTER 51. TEACHING MOTION/FORCE SKILLS TO ROBOTS BY HUMAN DEMONSTRATION;316
55.1;1. INTRODUCTION;316
55.2;2. HISTORICAL PERSPECTIVE;316
55.3;3. ELUCIDATION OF HUMAN SKILLS;319
55.4;4. PROSPECT OF FUTURE RESEARCH;320
55.5;5. CONCLUSIONS;321
55.6;6. REFERENCES;321
56;CHAPTER 52. DEVELOPMENT OF MACHINE-MAINTENANCE TRAINING SYSTEM IN VIRTUAL ENVIRONMENT;324
56.1;1. INTRODUCTION;324
56.2;2. BASIC TASKS IN MACHINE MAINTENANCE;325
56.3;3. SYSTEM CONFIGURATION;326
56.4;4. OBJECTS FOR EXPERIMENT OF ASSEMBLY AND DISASSEMBLY;326
56.5;5. GESTURE RECOGNITION ALGORITHMS;326
56.6;6. TASK REPRESENTATION BY PETRI NET;327
56.7;7. CONCLUDING REMARKS;328
56.8;ACKNOWLEDGEMENT;329
56.9;REFERENCES;329
57;CHAPTER 53. Industrial and experimental applications of transformation theory and ergodynamics;330
57.1;Introduction;330
57.2;Design of new assembly, material handling and testing RSI-free workstations.;330
57.3;Ergodynamics in increasing human-machine systems safety;332
57.4;Ergodynamics and practical use of humanmachine laboratory studies.;332
57.5;Conclusion;335
57.6;Acknowledgments;335
57.7;References;335
58;CHAPTER 54. Transformation dynamics in human-machine systems;336
58.1;Introduction;336
58.2;Basic ergodynamics definitions;337
58.3;The First Law of Ergodynamics;338
58.4;The Second Law of Ergodynamics;338
58.5;The Third Law of Ergodynamics;339
58.6;Conclusion;341
58.7;Acknowledgments;341
58.8;References;341
59;CHAPTER 55. A NEW MACHINE LEARNING METHOD INSPIRED BY HUMAN LEARNING;342
59.1;1. INTRODUCTION;342
59.2;2. LEARNING APPROACH INSPIRED BY HUMAN;343
59.3;3. HIGH SPEED INSERTION TASK;344
59.4;4. IMPLEMENTATION AND SIMULAITON;345
59.5;5. CONCLUSION;347
59.6;6. REFERENCES;347
60;CHAPTER 56. THE DESIGN OF PERCEPTUALLY AUGMENTED DISPLAYS TO SUPPORT INTERACTION WITH DYNAMIC SYSTEMS;348
60.1;1. INTRODUCTION;348
60.2;2. CONCRETE REPRESENTATIONS : COSTS & BENEFITS;349
60.3;3. TWO EXPERIMENTS ON AUGMENTED GRAPHICAL DISPLAY SUPPORT;350
60.4;4. DESIGN IMPLICATIONS;352
60.5;5. CONCLUSION;353
60.6;REFERENCES;353
61;CHAPTER 57. A CASE-BASED DESIGN BROWSER TO FACILITATE REUSE OF SOFTWARE ARTIFACTS;354
61.1;BACKGROUND;354
61.2;1. INTRODUCTION;354
61.3;2. A SOFTWARE DESIGN BROWSER;355
61.4;3· A DESIGN BROWSER FOR COMMAND MANAGEMENT SOFTWARE DESIGN;356
61.5;4. EMPIRICAL EVALUATION OF THE CMS DESIGN BROWSER;356
61.6;ACKNOWLEDGEMENTS;359
61.7;REFERENCES;359
62;CHAPTER 58. A DESIGN METHODOLOGY FOR OPERATOR DISPLAYS OF HIGHLY AUTOMATED SUPERVISORY CONTROL SYSTEMS;360
62.1;1. WHY IS MONITORING IMPORTANT? WHY IS IT DIFFICULT?;360
62.2;2. DESIGNING DISPLAYS AND INTERACTION;361
62.3;3. A DESIGN METHODOLOGY FOR INTERACTIVE MONITORING AND CONTROL INTERFACES;361
62.4;ACKNOWLEDGMENTS;364
62.5;REFERENCES;365
63;CHAPTER 59. A DESIGNERS ASSOCIATE: SOFTWARE DESIGN SUPPORT FOR COMMAND AND CONTROL SYSTEMS;366
63.1;1. INTRODUCTION;366
63.2;2. SOFTWARE DEVELOPMENT AND SCIENCE PRACTICE;367
63.3;3· THE DESIGNER'S ASSOCIATE;368
63.4;4. ORGANIZATIONAL STRUCTURE RATIONALE;370
63.5;5. CONCLUSION;371
63.6;ACKNOWLEDGMENTS;371
63.7;REFERENCES;371
64;AUTHOR INDEX;372



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.