Sheffer | Polynomial Methods and Incidence Theory | Buch | 978-1-108-83249-6 | sack.de

Buch, Englisch, Band 197, 260 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 581 g

Reihe: Cambridge Studies in Advanced Mathematics

Sheffer

Polynomial Methods and Incidence Theory


Erscheinungsjahr 2022
ISBN: 978-1-108-83249-6
Verlag: Cambridge University Press

Buch, Englisch, Band 197, 260 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 581 g

Reihe: Cambridge Studies in Advanced Mathematics

ISBN: 978-1-108-83249-6
Verlag: Cambridge University Press


The past decade has seen numerous major mathematical breakthroughs for topics such as the finite field Kakeya conjecture, the cap set conjecture, Erdos's distinct distances problem, the joints problem, as well as others, thanks to the introduction of new polynomial methods. There has also been significant progress on a variety of problems from additive combinatorics, discrete geometry, and more. This book gives a detailed yet accessible introduction to these new polynomial methods and their applications, with a focus on incidence theory. Based on the author's own teaching experience, the text requires a minimal background, allowing graduate and advanced undergraduate students to get to grips with an active and exciting research front. The techniques are presented gradually and in detail, with many examples, warm-up proofs, and exercises included. An appendix provides a quick reminder of basic results and ideas.

Sheffer Polynomial Methods and Incidence Theory jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Introduction; 1. Incidences and classical discrete geometry; 2. Basic real algebraic geometry in R^2; 3. Polynomial partitioning; 4. Basic real algebraic geometry in R^d; 5. The joints problem and degree reduction; 6. Polynomial methods in finite fields; 7. The Elekes–Sharir–Guth–Katz framework; 8. Constant-degree polynomial partitioning and incidences in C^2; 9. Lines in R^3; 10. Distinct distances variants; 11. Incidences in R^d; 12. Incidence applications in R^d; 13. Incidences in spaces over finite fields; 14. Algebraic families, dimension counting, and ruled surfaces; Appendix. Preliminaries; References; Index.


Sheffer, Adam
Adam Sheffer is Mathematics Professor at CUNY's Baruch College and the CUNY Graduate Center. Previously, he was a postdoctoral researcher at the California Institute of Technology. Sheffer's research work is focused on polynomial methods, discrete geometry, and additive combinatorics.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.