Buch, Englisch, Band 907, 705 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1196 g
Select Proceedings of IDEA 2021
Buch, Englisch, Band 907, 705 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1196 g
Reihe: Lecture Notes in Electrical Engineering
ISBN: 978-981-19-4689-9
Verlag: Springer
The book contains select proceedings of the 3rd International Conference on Data, Engineering, and Applications (IDEA 2021). It includes papers from experts in industry and academia that address state-of-the-art research in the areas of big data, data mining, machine learning, data science, and their associated learning systems and applications. This book will be a valuable reference guide for all graduate students, researchers, and scientists interested in exploring the potential of big data applications.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Big Data
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
1. Medical Assistance Chatbot using Deep Learning.- 2. Distortion Controlled Secure Reversible Data Hiding in H.264 videos.- 3. A Method for improving Efficiency and Security of FANET using Chaotic Black Hole Optimization based Routing (BHOR) Technique.- 4. Machine Learning Techniques for Intrusion Detection System: A Survey.- 5. Software Fault Detection by using Rider Optimization Algorithm (ROA) based Deep Neural Network (DNN).- 6. An Approach for Predicting Admissions in Post Graduate Program by using Machine Learning.- 7. A Survey on Various Representation Learning of Hypergraph for Unsupervised Feature Selection.- 8. A brief study of time series forecasting technique using linear regression, SVM, LSTM, ARIMA and SARIMA.- 9. Adoption of Blockchain Technology for Storage & Verification of Educational Documents.- 10. Obstacle Collision Prediction model for Path Planning Using Obstacle Trajectory Clustering.




