Buch, Englisch, 416 Seiten, Format (B × H): 172 mm x 251 mm, Gewicht: 780 g
Reihe: Wiley - IEEE
Buch, Englisch, 416 Seiten, Format (B × H): 172 mm x 251 mm, Gewicht: 780 g
Reihe: Wiley - IEEE
ISBN: 978-1-118-85156-2
Verlag: Wiley
Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission.
Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids.
Key features:
- Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland.
- Comprehensive explanation of MMC application in HVDC and MTDC transmission technology.
- Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore.
- Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals.
- A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website.
This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Energietechnik | Elektrotechnik Energieverteilung, Stromnetze
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Leistungselektronik
- Technische Wissenschaften Energietechnik | Elektrotechnik Elektrotechnik
- Technische Wissenschaften Energietechnik | Elektrotechnik Windkraftanlagen, Wasserkraftanlagen
Weitere Infos & Material
Preface xiii
Acknowledgements xv
About the Companion Website xvii
Nomenclature xix
Introduction 1
1 Introduction to Modular Multilevel Converters 7
1.1 Introduction 7
1.2 The Two-Level Voltage Source Converter 9
1.3 Benefits of Multilevel Converters 15
1.4 Early Multilevel Converters 17
1.5 Cascaded Multilevel Converters 23
1.6 Summary 57
References 58
2 Main-Circuit Design 60
2.1 Introduction 60
2.2 Properties and Design Choices of Power Semiconductor Devices for High-Power Applications 61
2.3 Medium-Voltage Capacitors for Submodules 92
2.4 Arm Inductors 96
2.5 Submodule Configurations 98
2.6 Choice of Main-Circuit Parameters 112
2.7 Handling of Redundant and Faulty Submodules 118
2.8 Auxiliary Power Supplies for Submodules 121
2.9 Start-Up Procedures 126
2.10 Summary 126
References 127
3 Dynamics and Control 133
3.1 Introduction 133
3.2 Fundamentals 134
3.3 Converter Operating Principle and Averaged Dynamic Model 137
3.4 Per-Phase Output-Current Control 148
3.5 Arm-Balancing (Internal) Control 161
3.6 Three-Phase Systems 175
3.7 Vector Output-Current Control 184
3.8 Higher-Level Control 192
3.9 Control Architectures 207
3.10 Summary 212
References 212
4 Control under Unbalanced Grid Conditions 214
4.1 Introduction 214
4.2 Grid Requirements 214
4.3 Shortcomings of Conventional Vector Control 215
4.4 Positive/Negative-Sequence Extraction 219
4.5 Injection Reference Strategy 223
4.6 Component-Based Vector Output-Current Control 226
4.7 Summary 228
References 231
5 Modulation and Submodule Energy Balancing 232
5.1 Introduction 232
5.2 Fundamentals of Pulse-Width Modulation 233
5.3 Carrier-Based Modulation Methods 236
5.4 Multilevel Carrier-Based Modulation 243
5.5 Nearest-Level Control 252
5.6 Submodule Energy Balancing Methods 256
5.7 Summary 270
References 271
6 Modeling and Simulation 272
6.1 Introduction 272
6.2 Leg-Level Averaged (LLA) Model 274
6.3 Arm-Level Averaged (ALA) Model 275
6.4 Submodule-Level Averaged (SLA) Model 278
6.5 Submodule-Level Switched (SLS) Model 280
6.6 Summary 281
References 282
7 Design and Optimization of MMC-HVDC Schemes for Offshore Wind-Power Plant Application 283
7.1 Introduction 283
7.2 The Influence of Regulatory Frameworks on the Development Strategies for Offshore HVDC Schemes 284
7.3 Impact of Regulatory Frameworks on the Functional Requirements and Design of Offshore HVDC Terminals 286
7.4 Components of an Offshore MMC-HVDC Converter 287
7.5 Offshore Platform Concepts 294
7.6 Onshore HVDC Converter 295
7.7 Recommended System Studies for the Development and Integration of an Offshore HVDC Link to a WPP 298
7.8 Summary 303
References 303
8 MMC-HVDC Standards and Commissioning Procedures 305
8.1 Introduction 305
8.2 CIGRE and IEC Activities for the Standardization of MMC-HVDC Technology 306
8.3 MMC-HVDC Commissioning and Factory and Site Acceptance Tests 309
8.4 Summary 317
References 317
9 Control and Protection of MMC-HVDC under AC and DC Network Fault Contingencies 318
9.1 Introduction 318
9.2 Two-Level VSC-HVDC Fault Characteristics under Unbalanced AC Network Contingency 319
9.3 MMC-HVDC Fault Characteristics under Unbalanced AC Network Contingency 322
9.4 dc Pole-to-Ground Short-Circuit Fault Characteristics of the Half-Bridge Mmc-hvdc 325
9.5 MMC-HVDC Component Failures 327
9.6 MMC-HVDC Protection Systems 329
9.7 Summary 333
References 334
10 MMC-HVDC Transmission Technology and MTDC Networks 336
10.1 Introduction 336
10.2 LCC-HVDC Transmission Technology 336
10.3 Two-Level VSC-HVDC Transmission Technology 338
10.4 Modular Multilevel HVDC Transmission Technology 339
10.5 The European HVDC Projects and MTDC Network Perspectives 343
10.6 Multi-Terminal HVDC Configurations 345
10.7 dc Load Flow Control in MTdc Networks 348
10.8 dc Grid Control Strategies 349
10.9 dc Fault Detection and Protection in MTdc Networks 355
10.10 Fault-Detection Methods in MTDC 357
10.11 dc Circuit Breaker Technologies 362
10.12 Fault-Current Limiters 367
10.13 The Influence of Grounding Strategy on Fault Currents 369
10.14 dc Supergrids of the Future 370
10.15 Summary 371
References 371
Index 373