Buch, Englisch, Band 2306, 342 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 540 g
14th International Conference, ATIS 2024, Tamil Nadu, India, November 22-24, 2024, Proceedings
Buch, Englisch, Band 2306, 342 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 540 g
Reihe: Communications in Computer and Information Science
ISBN: 978-981-97-9742-4
Verlag: Springer Nature Singapore
This book constitutes the refereed proceedings of the 14th International Conference, on Applications and Techniques in Information Security, ATIS 2024, held in Tamil Nadu, India, November 22-24, 2024.
The 24 full papers presented were carefully reviewed and selected from 149 submissions. The conference focuses on Advancing Quantum Computing and Cryptography; AI-Driven Cybersecurity: The Role of Machine Learning; Advancing Cybersecurity with Deep Learning Techniques; and Securing Connected Systems: IoT, Cloud, and Web Security Strategies.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Technische Informatik Netzwerk-Hardware
- Mathematik | Informatik EDV | Informatik Computerkommunikation & -vernetzung Netzwerksicherheit
- Sozialwissenschaften Pädagogik Lehrerausbildung, Unterricht & Didaktik E-Learning, Bildungstechnologie
- Mathematik | Informatik EDV | Informatik Technische Informatik Computersicherheit
Weitere Infos & Material
.- Security of Emerging Technologies in Computer Networks.
.- Advancing Quantum Computing and Cryptography.
.- Optical Neural Networks – A Strategy for Secure Quantum Computing.
.- Guarding Against Quantum Threats: A Survey of Post-Quantum Cryptography Standardization, Techniques, and Current Implementations.
.- Cryptographic Distinguishers through Deep Learning for Lightweight Block Ciphers.
.- Detection and Mitigation of Email Phishing.
.- Securing Digital Forensic Data Using Neural Networks, Elephant Herd Optimization and Complex Sequence Techniques.
.- Design of Image Encryption Technique Using MSE Approach.
.- Low Latency Binary Edward Curve Crypto processor for FPGA platforms.
.- Augmenting Security in Edge Devices: FPGA-Based Enhanced LEA Algorithm with S-Box and Chaotic Functions.
.- AI-Driven Cybersecurity: The Role of Machine Learning.
.- Machine Learning Approach for Malware Detection Using Malware Memory Analysis Data.
.- DDOS Attack Detection in Virtual Machine Using Machine Learning Algorithms.
.- An Unsupervised Method for Intrusion Detection using Novel Percentage Split Clustering.
.- HATT-MLPNN: A Hybrid Approach for Cyber-Attack Detection in Industrial Control Systems Using MLPNN and Attention Mechanisms.
.- Silent Threats: Monitoring Insider Risks in Healthcare Sector.
.- Advancing Cybersecurity with Deep Learning Techniques.
.- Enhanced Deep Learning for IIoT Threat Intelligence: Revealing Advanced Persistent Threat Attack Patterns.
.- Adaptive Data-Driven LSTM Model for Sensor Drift Detection in Water Utilities.
.- Enhancing FGSM Attacks with Genetic Algorithms for Robust Adversarial Examples in Remote Sensing Image Classification Systems.
.- GAN-Enhanced Multiclass Malware Classification with Deep Convolutional Networks.
.- Securing Connected Systems: IoT, Cloud, and Web Security Strategies.
.- IOT Based Locker Access System with MFA Remote Authentication.
.- A Secure Authentication Scheme between Edge Devices using HyperGraph Hashing Technique in IoT Environment.
.- Enhancing Access Control and Information Sharing in Cloud IoT with an Effective Blockchain-Based Authority System.
.- Securing Data in MongoDB: A Framework Using Encryption.
.- Handling Sensitive Medical Data – A Differential Privacy enabled Federated Learning Approach.
.- Securing your Web Applications: The Power of Bugbite Vulnerability Scanner.