Buch, Englisch, Band 1060, 416 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 663 g
A Paradigm Shift in Health Intelligence
Buch, Englisch, Band 1060, 416 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 663 g
Reihe: Studies in Computational Intelligence
ISBN: 978-3-031-14773-9
Verlag: Springer International Publishing
This book aims to highlight the latest achievements in the use of AI and multimodal artificial intelligence in biomedicine and healthcare. Multimodal AI is a relatively new concept in AI, in which different types of data (e.g. text, image, video, audio, and numerical data) are collected, integrated, and processed through a series of intelligence processing algorithms to improve performance. The edited volume contains selected papers presented at the 2022 Health Intelligence workshop and the associated Data Hackathon/Challenge, co-located with the Thirty-Sixth Association for the Advancement of Artificial Intelligence (AAAI) conference, and presents an overview of the issues, challenges, and potentials in the field, along with new research results. This book provides information for researchers, students, industry professionals, clinicians, and public health agencies interested in the applications of AI and Multimodal AI in public health and medicine.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
Weitere Infos & Material
Unsupervised Numerical Reasoning to Extract Phenotypes from Clinical Text by Leveraging External Knowledge.- Customized Training of Pretrained Language Models to Detect Post Intents in Online Health Support Groups.- EXPECT-NLP: An Integrated Pipeline and User Interface for Exploring Patient Preferences Directly from Patient-Generated Text.