Shaban-Nejad / Bianco / Michalowski | AI for Health Equity and Fairness | Buch | 978-3-031-63591-5 | sack.de

Buch, Englisch, Band 1164, 306 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 658 g

Reihe: Studies in Computational Intelligence

Shaban-Nejad / Bianco / Michalowski

AI for Health Equity and Fairness

Leveraging AI to Address Social Determinants of Health
2024
ISBN: 978-3-031-63591-5
Verlag: Springer Nature Switzerland

Leveraging AI to Address Social Determinants of Health

Buch, Englisch, Band 1164, 306 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 658 g

Reihe: Studies in Computational Intelligence

ISBN: 978-3-031-63591-5
Verlag: Springer Nature Switzerland


This book aims to highlight the latest achievements in the use of AI for improving Health Equity and Fairness. The edited volume contains selected papers presented at the 2024 Health Intelligence workshop, co-located with the Thirty-Eight Association for the Advancement of Artificial Intelligence (AAAI) conference, and presents an overview of the issues, challenges, and potentials in the field, along with new research results. This book provides information for researchers, students, industry professionals, clinicians, and public health agencies interested in the applications of AI in medicine and public health.

Shaban-Nejad / Bianco / Michalowski AI for Health Equity and Fairness jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Artificial Intelligence for Personalized Care, Wellness and Longevity Research.- Towards Personalised Patient Risk Prediction Using Temporal Hospital Data  Trajectories.-  Ambulance Routing for Optimizing Stroke Patient Outcomes.- Navigating the Synthetic Realm Harnessing Diffusion based Models for Laparoscopic Text to Image Generation.- Generation of Clinical Skin Images with Pathology with Scarce Data.- MILFORMER Weighted Dual Stream Class Centered Random Attention Multiple Instance Learning for Whole Slide Image Classification.- Multi-Prompt Fine Tuning of Foundation Models for Enhanced Biomedical Image Segmentation.- A Transformer Approach for Cognitive Impairment Classification.- Deep Learning Approach to Identify Diabetic Retinopathy Severity and Progression Using Ultra Wide Field Retinal Images.- DOST Domain Obedient Self supervision for Trustworthy Multi Label Classification with Noisy Labels.- Using Large Language Models for Generating Smart Contracts for Health Insurance from Textual Policies.- Can GPT Improve the State of Prior Authorization via Guideline Based Automated Question Answering.- Designing Retrieval Augmented Language Models for Clinical Decision Support.- Co morbidity Representation in Artificial Intelligence Tapping into Unused Clinical Knowledge.- MedBlindTuner Towards Privacy preserving Fine tuning on Biomedical Images with Transformers and Fully Homomorphic Encryption.- Knowledge Grounded Medical Dialogue Generation.- Interpretable Classification of Early Stage Parkinson’s Disease from EEG.- Semantic and Visual Attention Driven Multi LSTM Network for Automated Clinical Report Generation.- Hierarchical Multi Label Classification of Online Vaccine Concerns.- A Semantic Architecture for Continuous Health Monitoring, Risk Prediction, and Proactive Decision Making.- On the Feasibility of Multimodal Dialog Based Remote Balance Assessment.- SAIC Integration of Speech Anonymization and Identity Classification.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.