Seydel | Einführung in die numerische Berechnung von Finanz-Derivaten | E-Book | sack.de
E-Book

E-Book, Deutsch, 154 Seiten, eBook

Reihe: Springer-Lehrbuch

Seydel Einführung in die numerische Berechnung von Finanz-Derivaten

Computational Finance
2000
ISBN: 978-3-642-59733-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Computational Finance

E-Book, Deutsch, 154 Seiten, eBook

Reihe: Springer-Lehrbuch

ISBN: 978-3-642-59733-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



In jüngster Zeit haben Finanz-Derivate eine starke Verbreitung erfahren. Das vorliegende Lehrbuch bietet eine elementare Einführung in diejenigen Methoden der Numerik und des Wissenschaftichen Rechnens, die insbesondere für die Berechung von Optionspreisen grundlegend sind. Nach einer kurzen Beschreibung der Modellierung von Standard-Optionen folgt als erster Hauptteil die numerische Simulation der Stochastik mit der Berechnung von Zufallszahlen, der Integration von stochastischen Differentialgleichungen und dem Einsatz von Monte-Carlo-Verfahren. Der zweite Hauptteil konzentriert sich auf die Numerik zu den Black-Scholes Ansätzen mit partiellen Differential-Gleichungen und -Ungleichungen. Dabei werden Lösungsalgorithmen von Differenzenverfahren und von Finite-Element-Verfahren erklärt. Übungsaufgaben, instruktive Abbildungen sowie themenbezogene Anhänge runden das Buch ab. Lösungshinweise zu ausgewählten Aufgaben werden unter http://www.mi.uni-koeln.de/numerik/compfin/ bereitgestellt.

Seydel Einführung in die numerische Berechnung von Finanz-Derivaten jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


1 Grundlagen.- 1.1 Optionen.- 1.2 Partielle Differentialgleichungen.- 1.3 Numerische Methoden.- 1.4 Binomial-Bäume.- 1.5 Stochastische Prozesse.- 1.6 Stochastische Differentialgleichungen.- 1.7 Itô-Lemma und Folgerungen.- Anmerkungen.- Übungsaufgaben.- 2 Berechnung von Zahlen nach vorgebenen Verteilungen.- 2.1 Pseudo-Zufallszahlen.- 2.2 Transformierte Zufallsvariable.- 2.3 Normalverteilte Zufallsvariable.- 2.4 Zahlenfolgen mit niedriger Diskrepanz.- Anmerkungen.- Übungsaufgaben.- 3 Integration von Stochastischen Differentialgleichungen.- 3.1 Genauigkeit.- 3.2 Stochastische Taylorentwicklungen.- 3.3 Beispiele Numerischer Methoden.- 3.4 Zwischenwerte.- 3.5 Monte-Carlo-Simulation.- Anmerkungen.- Übungsaufgaben.- 4 Black-Scholes und Finite Differenzen.- 4.1 Vorbereitungen.- 4.2 Grundlagen von Differenzenverfahren.- 4.3 Crank-Nicolson Verfahren.- 4.4 Randbedingungen.- 4.5 Amerikanische Optionen als freie Randwertprobleme.- 4.6 Berechnung amerikanischer Optionen.- 4.7 Zur Genauigkeit.- Anmerkungen.- Übungsaufgaben.- 5 Finite-Element-Methoden.- 5.1 Gewichtete Residuen.- 5.2 Galerkin-Ansatz mit Hutfunktionen.- 5.3 Anwendung auf Optionen.- 5.4 Fehlerabschätzungen.- Anmerkungen.- Übungsaufgaben.- Anhänge.- A1 Finanz-Derivate und ihr Umfeld.- A2 Wichtiges aus Wahrscheinlichkeit und Statistik.- A3 Die Black-Scholes-Gleichung.- A4 Methoden der Numerik.- A6 Funktionenräume.- Literatur.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.