Serth / Lestina | Process Heat Transfer | E-Book | sack.de
E-Book

E-Book, Englisch, 632 Seiten

Serth / Lestina Process Heat Transfer

Principles, Applications and Rules of Thumb
2. Auflage 2014
ISBN: 978-0-12-397792-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

Principles, Applications and Rules of Thumb

E-Book, Englisch, 632 Seiten

ISBN: 978-0-12-397792-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Process Heat Transfer is a reference on the design and implementation of industrial heat exchangers. It provides the background needed to understand and master the commercial software packages used by professional engineers in the design and analysis of heat exchangers. This book focuses on types of heat exchangers most widely used by industry: shell-and-tube exchangers (including condensers, reboilers and vaporizers), air-cooled heat exchangers and double-pipe (hairpin) exchangers. It provides a substantial introduction to the design of heat exchanger networks using pinch technology, the most efficient strategy used to achieve optimal recovery of heat in industrial processes. - Utilizes leading commercial software. Get expert HTRI Xchanger Suite guidance, tips and tricks previously available via high cost professional training sessions. - Details the development of initial configuration for a heat exchanger and how to systematically modify it to obtain an efficient final design. - Abundant case studies and rules of thumb, along with copious software examples, provide a complete library of reference designs and heuristics for readers to base their own designs on.

Bob taught for more than 30 years in the Department of Chemical and Natural Gas Engineering at Texas A&M University-Kingsville. Prior to that, he was a senior research engineer at Monsanto and taught chemical engineering at the University of Puerto Rico in Mayaguez.

Serth / Lestina Process Heat Transfer jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;DEDICATION;3
3;PROCESS HEAT TRANSFER: PRINCIPLES, APPLICATIONS AND RULES
OF THUMB
;4
4;Copyright;5
5;CONTENTS
;6
6;PREFACE TO FIRST EDITION;10
7;PREFACE TO SECOND EDITION
;12
8;CONVERSION FACTORS
;14
9;PHYSICAL CONSTANTS
;16
10;ACKNOWLEDGMENTS
;18
11;1 - Heat Conduction;22
11.1;1.1 Introduction;22
11.2;1.2 Fourier’s Law of Heat Conduction;22
11.3;Example 1.1;24
11.4;1.3 The Heat Conduction Equation;25
11.5;Example 1.2;26
11.6;Example 1.3;28
11.7;Example 1.4;29
11.8;Example 1.5;30
11.9;1.4 Thermal Resistance;32
11.10;Example 1.6;33
11.11;Example 1.7;34
11.12;1.5 The Conduction Shape Factor;35
11.13;Example 1.8;37
11.14;Example 1.9;38
11.15;1.6 Unsteady-State Conduction;39
11.16;Example 1.10;41
11.17;Example 1.11;43
11.18;1.7 Mechanisms of Heat Conduction;44
11.19;References;44
11.20;Notations;45
11.21;Greek Letters;46
11.22;Other Symbols;46
12;2 - Convective and Radiative Heat Transfer;52
12.1;2.1 Introduction;52
12.2;2.2 Combined Conduction and Convection;52
12.3;Example 2.1;52
12.4;Example 2.2;54
12.5;2.3 Extended Surfaces;54
12.6;Example 2.3;58
12.7;Example 2.4;58
12.8;2.4 Forced Convection in Pipes and Ducts;59
12.9;Example 2.5;61
12.10;Example 2.6;63
12.11;Example 2.7;64
12.12;Example 2.8;65
12.13;2.5 Forced Convection in External Flow;66
12.14;Example 2.9;67
12.15;Example 2.10;68
12.16;2.6 Free Convection;69
12.17;Example 2.11;71
12.18;Example 2.12;72
12.19;2.7 Radiation;72
12.20;Example 2.13;75
12.21;References;76
12.22;Notations;76
12.23;Greek Letters;77
13;3 - Heat Exchangers;88
13.1;3.1 Introduction;88
13.2;3.2 Double-Pipe Equipment;88
13.3;3.3 Shell-and-Tube Equipment;89
13.4;3.4 Plate Heat Exchangers;95
13.5;3.5 The Overall Heat-Transfer Coefficient;97
13.6;Example 3.1;100
13.7;3.6 The LMTD Correction Factor;101
13.8;Example 3.2;102
13.9;3.7 Analysis of Double-Pipe Exchangers;103
13.10;Example 3.3;104
13.11;3.8 Preliminary Design of Shell-and-Tube Exchangers;107
13.12;Example 3.4;107
13.13;3.9 Rating a Shell-and-Tube Exchanger;109
13.14;Example 3.5;111
13.15;3.10 Heat-Exchanger Effectiveness;113
13.16;Example 3.6;113
13.17;References;115
13.18;Appendix 3.A Derivation of the Logarithmic Mean Temperature Difference;115
13.19;Notations;116
13.20;Greek Letters;117
14;4 - Design of Double-Pipe Heat Exchangers;122
14.1;4.1 Introduction;122
14.2;4.2 Heat-Transfer Coefficients for Exchangers without Fins;122
14.3;4.3 Hydraulic Calculations for Exchangers without Fins;122
14.4;4.4 Series/Parallel Configurations of Hairpins;124
14.5;4.5 Multi-Tube Exchangers;125
14.6;4.6 Over-Surface and Over-Design;126
14.7;Example 4.1;126
14.8;Example 4.2;132
14.9;4.7 Finned-Pipe Exchangers;135
14.10;4.8 Heat-Transfer Coefficients and Friction Factors for Finned Annuli;137
14.11;4.9 Wall Temperature for Finned Pipes;139
14.12;Example 4.3;139
14.13;4.10 Computer Software;144
14.14;Example 4.4;144
14.15;HEXTRAN Input File for Example 4.4;148
14.16;HEXTRAN Output Data for Example 4.4;150
14.17;Example 4.5;151
14.18;HEXTRAN Input File for Example 4.5;152
14.19;HEXTRAN Output Data for Example 4.5;155
14.20;Example 4.6;158
14.21;HEXTRAN Input File for Example 4.6;160
14.22;HEXTRAN Output Data for Example 4.6;162
14.23;References;163
14.24;Appendix 4.A. Hydraulic Equations in SI Units;163
14.25;Appendix 4.B. Incremental Analysis;164
14.26;Notations;165
14.27;Greek Letters;166
15;5 - Design of Shell-and-Tube Heat Exchangers;172
15.1;5.1 Introduction;172
15.2;5.3 Hydraulic Calculations;173
15.3;5.4 Finned Tubing;175
15.4;5.5 Tube-Count Tables;177
15.5;5.6 Factors Affecting Pressure Drop;177
15.6;5.7 Design Guidelines;179
15.7;5.8 Design Strategy;182
15.8;Example 5.1;182
15.9;Example 5.2;189
15.10;5.9 Computer Software;194
15.11;Example 5.3;195
15.12;HEXTRAN Input File for Example 5.3;196
15.13;HEXTRAN Output Data for Example 5.3;198
15.14;Example 5.4;199
15.15;HEXTRAN Input File for Example 5.4, Run 1;201
15.16;HEXTRAN Output Data for Example 5.4, Run 1;203
15.17;HEXTRAN Output Data for Example 5.4, Run 3;205
15.18;Example 5.5;206
15.19;Temperature Profiles for Example 5.5: Design Conditions;208
15.20;Temperature Profiles for Example 5.5: Clean Conditions;209
15.21;References;210
15.22;Appendix 5.A Hydraulic Equations in SI Units;210
15.23;Appendix 5.B Maximum Tube-Side Fluid Velocities;211
15.24;Appendix 5.C Maximum Unsupported Tube Lengths;211
15.25;Appendix 5.D Comparison of Head Types for Shell-and-Tube Exchangers;212
15.26;Notations;213
15.27;Greek Letters;214
16;6 - The Delaware Method;220
16.1;6.1 Introduction;220
16.2;6.2 Ideal Tube Bank Correlations;220
16.3;6.3 Shell-Side Heat-Transfer Coefficient;222
16.4;6.4 Shell-Side Pressure Drop;223
16.5;6.5 The Flow Areas;226
16.6;6.6 Correlations for the Correction Factors;230
16.7;6.7 Estimation of Clearances;232
16.8;Example 6.1;232
16.9;References;238
16.10;Notations;238
16.11;Greek Letters;239
17;7 - The Stream Analysis Method;244
17.1;7.1 Introduction;244
17.2;7.2 The Equivalent Hydraulic Network;244
17.3;7.3 The Hydraulic Equations;244
17.4;7.4 Shell-Side Pressure Drop;246
17.5;7.5 Shell-Side Heat-Transfer Coefficient;247
17.6;7.6 Temperature Profile Distortion;247
17.7;Example 7.1;248
17.8;7.7 Good Design Practice;249
17.9;7.8 The Wills-Johnston Method;249
17.10;Example 7.2;254
17.11;7.9 Computer Software;258
17.12;Example 7.3;259
17.13;Xist Output Summary for Example 7.3;265
17.14;Xist Tube Layout for Example 7.3;266
17.15;Example 7.4;267
17.16;Xist Tube Layouts for Example 7.4;269
17.17;Xist Output Summary for Example 7.4: Ribbon Tube Layout;270
17.18;Xist Exchanger Drawing for Example 7.4;271
17.19;Example 7.5;271
17.20;Solution;272
17.21;Temperature Profiles for Modified E-shell Design under Clean Conditions;272
17.22;Xist Rating Data Sheet for Example 7.5: F-shell Design;273
17.23;Xist Tube Layout for Example 7.5: F-shell Design;274
17.24;Xist Output Summary for Example 7.5: Simulation Run for F-shell Design;275
17.25;Temperature Profiles for F-shell Design under Clean Conditions;276
17.26;Example 7.6;276
17.27;Xist Output Summary for Example 7.6: Design Run;278
17.28;Xist Exchanger Drawing Showing Poor Baffle Configuration;279
17.29;Xist Output Summary for Example 7.6: Final Rating Run;280
17.30;Design Summary for Example 7.6;281
17.31;Exchanger Drawing for Example 7.6: Final Design;281
17.32;Tube Layout for Example 7.6;282
17.33;References;282
17.34;Notations;283
17.35;Greek Letters;284
18;8 - HEAT-Exchanger Networks;288
18.1;8.1 Introduction;288
18.2;8.2 An Example: TC3;288
18.3;8.3 Design Targets;288
18.4;8.4 The Problem Table;289
18.5;8.5 Composite Curves;290
18.6;8.6 The Grand Composite Curve;293
18.7;8.7 Significance of the Pinch;294
18.8;8.8 Threshold Problems and Utility Pinches;295
18.9;8.9 Feasibility Criteria at the Pinch;296
18.10;8.10 Design Strategy;297
18.11;8.11 Minimum-Utility Design for TC3;298
18.12;8.12 Network Simplification;301
18.13;8.13 Number of Shells;303
18.14;8.14 Targeting for Number of Shells;304
18.15;8.15 Area Targets;308
18.16;8.16 The Driving Force Plot;310
18.17;8.17 Super Targeting;312
18.18;8.18 Targeting by Linear Programming;312
18.19;8.19 Computer Software;314
18.20;Example 8.1;314
18.21;HEXTRAN Input File for Example 8.1, Part (a);316
18.22;HEXTRAN Results for Example 8.1, Part (a);317
18.23;HEXTRAN Results for Example 8.1, Part (b);318
18.24;Example 8.2;319
18.25;HEXTRAN Input File for Example 8.2;319
18.26;HEXTRAN Results for Example 8.2 with EMAT = 17°C;321
18.27;HEN for TC3 Generated By HEXTRAN with EMAT= 17°C;321
18.28;HEN for TC3 Generated By HEXTRAN with EMAT = 18°C;322
18.29;Example 8.3;323
18.30;Example 8.3: Targets Window in HX-Net;323
18.31;Example 8.3: Super Targeting Results from HX-Net;324
18.32;Example 8.3: Targeting Graphs Generated by HX-Net.;324
18.33;8.20 A Case Study: Gasoline Production from Bio-Ethanol;325
18.34;References;330
18.35;Notations;331
18.36;Greek Letters;332
19;9 - Boiling Heat Transfer;338
19.1;9.1 Introduction;338
19.2;9.2 Pool Boiling;338
19.3;9.3 Correlations for Nucleate Boiling on Horizontal Tubes;339
19.4;Example 9.1;342
19.5;Example 9.2;345
19.6;Example 9.3;349
19.7;Example 9.4;350
19.8;9.4 Two-Phase Flow;350
19.9;Example 9.5;355
19.10;Example 9.6;359
19.11;9.5 Convective Boiling in Tubes;361
19.12;Example 9.7;364
19.13;Example 9.8;369
19.14;Example 9.9;370
19.15;9.6 Film Boiling;371
19.16;Example 9.10;372
19.17;References;373
19.18;Notations;373
19.19;Greek Letters;375
20;10 - Reboilers;382
20.1;10.1 Introduction;382
20.2;10.2 Types of Reboilers;382
20.3;10.3 Design of Kettle Reboilers;386
20.4;Example 10.1;388
20.5;Example 10.2;389
20.6;10.4 Design of Horizontal Thermosyphon Reboilers;399
20.7;Example 10.3;400
20.8;10.5 Design of Vertical Thermosyphon Reboilers;404
20.9;Example 10.4;408
20.10;10.6 Computer Software;415
20.11;Example 10.5;415
20.12;HEXTRAN Input File for Example 10.5;417
20.13;HEXTRAN Output Data for Example 10.5;419
20.14;Example 10.6;421
20.15;HEXTRAN Input File for Example 10.6;423
20.16;HEXTRAN Output Data for Example 10.6;425
20.17;Example 10.7;428
20.18;Xist Output Summary for Example 10.7;431
20.19;Xist Tube Layout for Kettle Reboiler;432
20.20;Example 10.8;433
20.21;Xist Output Summary for Example 10.8;435
20.22;Example 10.9;436
20.23;Xist Output Summary for Example 10.9;437
20.24;Design Summary for Example 10.9: Vertical Thermosyphon Reboiler;438
20.25;Xist Exchanger Drawing for Example 10.9;439
20.26;Xist Tube Layout for Example 10.9;440
20.27;Example 10.10;440
20.28;Xist Output Summary for Re-rating of an Existing Naphtha Reboiler;441
20.29;Xist Output Summary for Naphtha Reboiler Using 250 psia Steam;442
20.30;References;442
20.31;Notations;444
20.32;Greek Letters;446
21;11 - Condensers;452
21.1;11.1 Introduction;452
21.2;11.2 Condenser Geometries and Configurations;452
21.3;11.3 Condensation on a Vertical Surface: Nusselt Theory;458
21.4;11.4 Condensation on Horizontal Tubes;462
21.5;Example 11.1;463
21.6;11.5 Modifications of Nusselt Theory;464
21.7;Example 11.2;466
21.8;Example 11.3;469
21.9;11.6 Condensation Inside Horizontal Tubes;471
21.10;Example 11.4;474
21.11;Example 11.5;476
21.12;11.7 Condensation on Finned Tubes;476
21.13;11.8 Pressure Drop;477
21.14;11.9 Mean Temperature Difference;478
21.15;Example 11.6;480
21.16;Example 11.7;488
21.17;11.10 Multi-Component Condensation;493
21.18;Example 11.8;495
21.19;11.11 Computer Software;497
21.20;Example 11.9;497
21.21;Xist Output Summary for Example 11.9;499
21.22;HEXTRAN Input File for Example 11.9;500
21.23;HEXTRAN Output Data for Example 11.9;502
21.24;Example 11.10;504
21.25;Xist Output Summary for Example 11.10: Design 1 (J-shell Condenser);505
21.26;Xist Output Summary for Example 11.10: Design 2 (X-shell Condenser);506
21.27;Design Summaries for Example 11.10;507
21.28;Exchanger Drawing and Tube Layout for Design 1 (J-shell Condenser);508
21.29;Exchanger Drawing and Tube Layout for Design 2 (X-shell Condenser);509
21.30;Example 11.11;509
21.31;Tube Layout for Example 11.11: Design with Single Segmental Baffles;510
21.32;Setting Plan for Example 11.11: Design with Single Segmental Baffles;511
21.33;Tube Layout for Example 11.11: Design with Double Segmental Baffles;512
21.34;Rating Data Sheet for Example 11.11: Design with Double Segmental Baffles;513
21.35;References;514
21.36;Appendix 11.A LMTD Correction Factors for TEMA J- and X-Shells;514
21.37;Example 11.A.1;515
21.38;Appendix 11.B. Flooding in Reflux Condensers;516
21.39;Notations;520
21.40;Greek Letters;522
21.41;Other Symbols;523
22;12 - Air-Cooled Heat Exchangers;530
22.1;12.1 Introduction;530
22.2;12.2 Equipment Description;530
22.3;12.3 Air-Side Heat-Transfer Coefficient;536
22.4;12.4 Air-Side Pressure Drop;537
22.5;12.5 Overall Heat-Transfer Coefficient;538
22.6;12.6 Fan and Motor Sizing;538
22.7;12.7 Mean Temperature Difference;540
22.8;12.8 Design Guidelines;541
22.9;12.9 Design Strategy;541
22.10;Example 12.1;542
22.11;12.10 Computer Software;547
22.12;Example 12.2;548
22.13;HEXTRAN Input File for Example 12.2;550
22.14;HEXTRAN Output Data for Example 12.2;552
22.15;Example 12.3;554
22.16;Xace Output Summary for Example 12.3;556
22.17;Xace Exchanger Drawings for Example 12.3;557
22.18;Xace Tube Layout for Example 12.3;557
22.19;Example 12.4;558
22.20;Xace Output Summary for Example 12.4: Design Run with 60 ft Tubes;560
22.21;Xace Output Summary for Example 12.4: Rating Run for Design 2;561
22.22;Design Summaries for Example 12.4;562
22.23;Fan Bay Layout for Design 1;563
22.24;Fan Bay Layout for Design 2;563
22.25;Tube Bundle Layout for Designs 2 and 3;564
22.26;Exchanger Drawing for Design 2 (1 of 2 Bays);564
22.27;References;564
22.28;Appendix 12.A LMTD Correction Factors for Air-Cooled Heat Exchangers;564
22.29;Appendix 12.B Standard US Motor Sizes;570
22.30;Appendix 12.C Correction of Air Density for Elevation;570
22.31;Example 12.C.1;570
22.32;Notations;571
22.33;Greek Letters;572
23;Appendix A - Thermophysical Properties of Materials;576
24;Appendix B: - Dimensions of Pipe and Tubing;602
25;Appendix C: - Tube-Count Tables;612
26;Appendix D: - Equivalent Lengths of Pipe Fittings;618
27;Appendix E: - Properties of Petroleum Streams;620


Acknowledgments
Figure 3.1 Reprinted, with permission, from Extended Surface Heat Transfer by D. Q. Kern and A. D. Kraus. Copyright © 1972 by The McGraw-Hill Companies, Inc. Table 3.1 Reprinted, with permission, from Perry’s Chemical Engineers’ Handbook, 7th edn., R. H. Perry and D. W. Green, eds. Copyright © 1997 by The McGraw-Hill Companies, Inc. Figure 3.6 Reprinted, with permission, from Extended Surface Heat Transfer by D. Q. Kern and A. D. Kraus. Copyright © 1972 by The McGraw-Hill Companies, Inc. Table 3.2 Reproduced, with permission, from J. W. Palen and J. Taborek, Solution of shell side flow pressure drop and heat transfer by stream analysis method, Chem. Eng. Prog. Symposium Series, 65, No. 92, 53–63, 1969. Copyright © 1969 by AIChE. Table 3.5 Reprinted, with permission, from Perry’s Chemical Engineers’ Handbook, 7th edn., R. H. Perry and D. W. Green, eds. Copyright © 1997 by The McGraw-Hill Companies, Inc. Figure 4.1 Copyright © 1998 from Heat Exchangers: Selection, Rating and Thermal Design by S. Kakac and H. Liu. Reproduced by permission of Taylor & Francis, a division of Informa plc. Figure 4.2 Copyright © 1998 from Heat Exchangers: Selection, Rating and Thermal Design by S. Kakac and H. Liu. Reproduced by permission of Taylor & Francis, a division of Informa plc. Figure 4.4 Reprinted, with permission, from Extended Surface Heat Transfer by D. Q. Kern and A. D. Kraus. Copyright © 1972 by The McGraw-Hill Companies, Inc. Figure 4.5 Reprinted, with permission, from Extended Surface Heat Transfer by D. Q. Kern and A. D. Kraus. Copyright © 1972 by The McGraw-Hill Companies, Inc. Figure 5.3 Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlünder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. Figures 6.1–6.5 Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlunder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa pic. Table 6.1 Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlünder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. Figure 6.10 Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlünder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. Figure 7.1 Reproduced, with permission, from J. W. Palen and J. Taborek, Solution of shell side flow pressure drop and heat transfer by stream analysis method, Chem. Eng. Prog. Symposium Series, 65, No. 92, 53–63, 1969. Copyright © 1969 by AIChE. Table, p. 283 Reproduced, with permission, from R. Mukherjee, Effectively design shell-and-tube heat exchangers, Chem. Eng. Prog., 94, No. 2, 21–37, 1998. Copyright © 1998 by AIChE. Figure 8.20 Reprinted from Computers and Chemical Engineering, Vol. 26, X. X. Zhu and X. R. Nie, Pressure Drop Considerations for Heat Exchanger Network Grassroots Design, pp. 1661–1676, Copyright © 2002, with permission from Elsevier. Figure 9.2 Copyright © 1997 from Boiling Heat Transfer and Two-Phase Flow, 2nd edn., by L. S. Tong and Y. S. Tang. Reproduced by permission of Taylor & Francis, a division of Informa plc. Figures 10.1–10.5 Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schliinder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. Figure 10.6 Reproduced, with permission, from A. W. Sloley, Properly design thermosyphon reboilers, Chem. Eng Prog. 93, No. 3, 52–64, 1997. Copyright © 1997 by AIChE. Table 10.1 Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlünder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. Appendix 10.A Reprinted, with permission, from Chemical Engineers’ Handbook, 5th edn., R. H. Perry and C. H. Chilton, eds. Copyright © 1973 by The McGraw-Hill Companies, Inc. Figure 11.1 Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlünder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. Figure 11.3 Copyright © 1998 from Heat Exchangers: Selection, Rating and Thermal Design by S. Kakac and H. Liu. Reproduced by permission of Taylor & Francis, a division of Informa plc. Figure 11.6 Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlünder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. Figure 11.7 Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlünder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. Figure 11.8 Reprinted, with permission, from Distillation Operation by H. Z. Kister. Copyright © 1990 by The McGraw-Hill Companies, Inc. Figure 11.14 Reprinted, with permission, from G. Breber, J. W. Palen and J. Taborek, Prediction of tubeside condensation of pure components using flow regime criteria, J. Heat Transfer, 102, 471–476, 1980. Originally published by ASME. Figure 11.15 Copyright © 1998 from Heat Exchangers: Selection, Rating and Thermal Design by S. Kakac and H. Liu. Reproduced by permission of Taylor & Francis, a division of Informa plc. Figures 11.A1–11.A3 Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlünder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. Figure 12.5 Copyright © 1991 from Heat Transfer Design Methods by J. J. McKetta, Editor. Reproduced by permission of Taylor & Francis, a division of Informa plc. Figures 12.A1–12.A5 Copyright © 1988 from Heat Exchanger Design Handbook by E. U. Schlünder, Editor-in-Chief. Reproduced by permission of Taylor & Francis, a division of Informa plc. Table A. 1 Copyright © 1972 from Handbook of Thermodynamic Tables and Charts by K. Raznjevic. Reproduced by permission of Taylor & Francis, a division of Informa plc. Table A.3 Reprinted, with permission, from Heat Transfer, 7th edn., by J. P. Holman. Copyright © 1990 by The McGraw-Hill Companies, Inc. Table A.4 Copyright © 1972 from Handbook of Thermodynamic Tables and Charts by K. Raznjevic. Reproduced by permission of Taylor & Francis, a division of Informa plc. Table A.7 Copyright © 1972 from Handbook of Thermodynamic Tables and Charts by K. Raznjevic. Reproduced by permission of Taylor & Francis, a division of Informa plc. Table A.8 Reprinted, with permission, from ASME Steam Tables, American Society of Mechanical Engineers, New York, 1967. Originally published by ASME. Table A.9 Reprinted, with permission, from Flow of Fluids Through Valves, Fittings and Pipe, Technical Paper 410, 1988, Crane Company. All rights reserved. Table A.11 Copyright © 1975 from Tables of Thermophysical Properties of Liquids and Gases, 2nd edn., by N. B. Vargaftik. Reproduced by permission of Taylor & Francis, a division of Informa plc. Table A.13 Copyright © 1972 from Handbook of Thermodynamic Tables and Charts by K. Raznjevic. Reproduced by permission of Taylor & Francis, a division of Informa plc. Table A.15 Reprinted, with permission, from Chemical Engineers’ Handbook, 5th edn., R. H. Perry and C. H. Chilton, eds. Copyright © 1973 by The...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.