Buch, Englisch, 196 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 578 g
Buch, Englisch, 196 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 578 g
Reihe: Chapman & Hall/CRC Computational Biology Series
ISBN: 978-1-032-75551-9
Verlag: Chapman and Hall/CRC
Systems Biology and Machine Learning Methods in Reproductive Health is an innovative and wide-ranging book that discovers the synergetic combination of disciplines: systems biology and machine learning, with an application in the field of reproductive health. This book assembles the expertise of leading scientists and clinicians to present a compilation of cutting-edge techniques and case studies utilizing computational methods to elucidate intricate biological systems, elucidate reproductive pathways, and address critical issues in the fields of fertility, pregnancy, and reproductive disorders. Bringing science and data science together, this groundbreaking book provides scientists, clinicians, and students with a step-by-step guide to uncovering the complexities of reproductive health through cutting-edge computational tools.
Zielgruppe
Academic, Postgraduate, and Professional Reference
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
- Naturwissenschaften Biowissenschaften Biochemie (nichtmedizinisch)
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Vorklinische Medizin: Grundlagenfächer Reproduktionsmedizin
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Naturwissenschaften Biowissenschaften Biowissenschaften Genetik und Genomik (nichtmedizinisch)
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Mustererkennung, Biometrik
- Naturwissenschaften Chemie Chemie Allgemein Chemometrik, Chemoinformatik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biophysik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Neuronale Netzwerke
- Naturwissenschaften Biowissenschaften Molekularbiologie
Weitere Infos & Material
1. Introduction to Systems Biology and Machine Learning
2. Data Sources and Data Integration in Reproductive Health
3. Genomics and Transcriptomics in Reproductive Health
4. Proteomics and Metabolomics in Reproductive Health
5. Systems Biology Approaches in Reproductive Health
6. Machine Learning Algorithms in Reproductive Health
7. Personalized Medicine in Reproductive Health
8. Ethical and Privacy Considerations
9. Challenges and Future Directions