Semenoff | Quantum Field Theory | Buch | 978-981-99-5409-4 | www2.sack.de

Buch, Englisch, 403 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 863 g

Reihe: Graduate Texts in Physics

Semenoff

Quantum Field Theory

An Introduction
1. Auflage 2023
ISBN: 978-981-99-5409-4
Verlag: Springer

An Introduction

Buch, Englisch, 403 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 863 g

Reihe: Graduate Texts in Physics

ISBN: 978-981-99-5409-4
Verlag: Springer


This book is a pedagogical introduction to quantum field theory, suitable for a students’ first exposure to the subject. It assumes a minimal amount of technical background and it is intended to be accessible to a wide audience including students of theoretical and experimental high energy physics, condensed matter, optical, atomic, nuclear and gravitational physics and astrophysics. It includes a thorough development of second quantization and the field theoretic approach to nonrelativistic many-body physics as a step in developing a broad-based working knowledge of the basic aspects of quantum field theory.  It presents a logical and systematic first principles development of relativistic field theory and of functional techniques and perturbation theory with Feynman diagrams, renormalization, and basic computations in quantum electrodynamics.

Semenoff Quantum Field Theory jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


1Many Particle Physics as a Quantum Field Theory

1.1   Introduction                           

1.2   Non-relativistic particles                       

1.2.1   Identical particles 

1.2.2   Spin 

1.3   Second Quantization 

1.4   The Heisenberg picture 

2 Degenerate Fermi and Bose Gases

2.1The limits of large volume and weakly interacting particles

2.2Degenerate Fermi gas and the Fermi surface 

 2.2.1  The ground state |O > 

2.2.2  Particle and holes 

2.2.3  The grand canonical ensemble

2.3 Bosons 

3 Classical field theory and the action principle

 3.1The Action Principle                                                 

3.1.1  The Action                     

3.1.2  The action principle and the Euler-Lagrange equations

3.1.3  Canonical momenta, Poisson brackets and Commutation relations                       

3.2Noether’s theorem                                               

        3.2.1 Conservation laws and continuity equations

        3.2.2 Definition of symmetry                

        3.2.3 Examples of symmetries

            3.2.4    Proof of Noether’s Theorem 

3.3Phase symmetry and the conservation of particle number

4 Non-relativistic space-time symmetries

4.1Translation invariance and the stress tensor       

4.2Galilean symmetry                                               

4.3Scale invariance                                                 

4.3.1  Improving the stress tensor                     

4.3.2  The consequences of scale invariance    

4.4Special Schrödinger symmetry

5 Space-time symmetry and relativistic field theory

5.1Quantum mechanics and special relativity         

5.2Coordinates                                 

5.3Scalars, vectors, tensors 

5.4The metric                              

5.5Symmetry of space-time          

 5.6The symmetries of Minkowski space            

6 Emergent relativistic symmetry

6.1Phonons                         

6.2The free scalar field theory           

 6.3The Debye theory of solids                 

 6.4Relativistic Fermions in Graphene         

7The Dirac Equation

 7.1The Dirac equation                        

 7.2Natural units                              

7.3Solving the Dirac equation     

7.4Lorentz Invariance of the Dirac equation         

 7.5Spin of the Dirac field            

7.6Phase symmetry and the conservation of particle number

current

7.6.1 Conserved number current

7.6.2 Relativistic Noether’s Theorem for the Dirac equation

7.6.3 Alternative Proof of Noether’s Theorem

7.7 Spacetime symmetries of the Dirac theory

7.7.1 Translation Invariance and the Stress Tensor

7.7.2 Lorentz Transformations

7.7.3 Stress Tensor and Killing Vectors

8 Photons                                                                                         

8.1 Relativistic Classical Electrodynamics

8.1.1 The Photon Hamiltonian

8.1.2 Massive photon (Optional reading)

8.2 Space-time symmetries of the photon

8.3 Quantum Electrodynamics

9 Functional methods                                                                      

9.1 Functional derivative

9.2 Functional integral

9.3 Real Scalar Field

9.3.1 Generating functional for free scalar fields

9.3.2 Wick’s theorem for scalar fields

9.3.3 Generating functional as a functional integral

9.4 The self-interacting real scalar field

9.5 Analyticity

10 More Functional Integrals                                                          

10.1 Functional Integrals for the Photon Field

10.2 Functional Methods for Fermions

10.3 Generating functionals for non-relativistic Fermions

10.3.1 Interacting non-relativistic Fermions

10.4 The Dirac field

10.4.1 2-point function for the Dirac field

10.4.2 Generating functional for the Dirac Field

10.4.3 Functional integral for the Dirac field

10.5 Functional Quantum Electrodynamics

11 The Weakly Coupled Scalar Field Theory                                   

11.1 The S-Matrix

11.2 Counterterms

11.3 Computation of the 2-point function

11.4 Feynman diagrams

11.5 Simplifications of Feynman diagrams

11.6 The 4-point function

11.7 Computation of a one-loop Feynman Integral

11.7.1 Dimensional regularization

11.7.2 Wick Rotation

11.7.3 Feynman Parameters

11.7.4 Integration in 2w-dimensions

11.7.5 Asymptotic expansion at 2w ~ 4

11.7.6 Inverse Wick rotation

11.7.7 The mass tadpole

11.7.8 The 2- and 4-point functions

11.8 Subtraction Schemes

11.9 Elastic scattering amplitude

11.10 Connected Correlations and Goldstone’s Theorem

11.10.1 Connected Correlation Functions

11.10.2 Goldstone’s Theorem

11.10.3 Irreducible Correlation functions

11.11Integration formulae

11.11.1 Feynman Parameter Formula

11.11.2 Dimensional regularization integral

11.11.3 Euler’s Gamma function

12 Perturbative Quantum Electrodynamics                                   

12.1 Counterterms

         12.2 The generating functional in perturbation theory

12.2.1 Wick’s Theorem for Photons and Fermions

12.3 Feynman diagrams

12.3.1 Feynman rules

12.3.2 Fermion 2-point function

12.4 The photon 2-point function

12.5 Quantum corrections of the Coulomb potential

13 Generating Functionals and Quantum Electrodynamics

13.1 Connected Correlations and Goldstone’s theorem

13.1.1 Connected Correlation Functions

13.1.2 Goldstone’s Theorem

13.2 Furry’s theorem

13.3 The Ward-Takahashi identities

13.4 Irreducible Correlation Functions


Gordon W. Semenoff is Professor at The University of British Columbia in Vancouver, Canada. His research examines the nature at its most fundamental level. His recent interests have been in superstring theory and duality of string theories with strongly coupled gauge field theories and in quantum gravity.  He is also interested in quantum information theoretic questions in quantum field theory.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.