E-Book, Englisch, 1190 Seiten, E-Book
Sels / Van de Voorde Nanotechnology in Catalysis
1. Auflage 2017
ISBN: 978-3-527-69981-0
Verlag: Wiley-VCH
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Applications in the Chemical Industry, Energy Development, and Environment Protection
E-Book, Englisch, 1190 Seiten, E-Book
Reihe: Applications of Nanotechnology
ISBN: 978-3-527-69981-0
Verlag: Wiley-VCH
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Dieses Handbuch präsentiert die in den letzten zehn Jahren entstandenen neuen Anwendungsbereiche und gibt einen umfassenden Überblick über dieses wissenschaftlich und ökonomisch wichtige Gebiet. Einzigartig ist die Verbindung von Grundlagenforschung und industrieller Entwicklung.
Weitere Infos & Material
VOLUME 1
PART I. Preparation of Nanacataylsts and Their Potential in Catalysis
Liquid-Phase Synthesis of Nanocatalysts
Supported Gold Nanoparticles Leading to Green Chemistry
Application of Nanocarbon Materials to Catalysis
Nano-Oxide Mesoporous Catalysts in Heterogeneous Catalysis
Solution Combustion Synthesis, Characterization, and Catalytic Properties of Oxide Materials
Nanostructured Porous Materials: Synthesis and Catalytic Applications
Core Magnetic Composite for Catalytic Applications
Metal Nanoparticles Supported on Magnetically Separable Materials
Tuning the Activity of Supported Nanoparticles Through Charge Transfer
Metal-Organic Framework-Mediated Synthesis in Catalysis
Sustainable Routes for Synthesis of Zeolite Catalysts
Superior Porous Zeolite Catalysts
Diffusion in Nanocatalysis
Atomic Layer Deposition for Catalysis
Digital Fabrication in Catalytic Technology
VOLUME 2
PART II. Nano Catalysis for Precision on Chemicals Production and Alternative Feedstock Conversion
Nanocatalysis: A Key Role for a Sustainable Energy Future
Nickel Nanocatalysis for Methane Steam Reforming
Development and Performance of Iron Based Oxygen Carriers for Chemical Looping
New Catalytic Initiatives and Challenges in Syngas Conversion
Nonoxidative Dehydroaromatization of Methane
Oxidations with Nanocatalysis
Propane-selective Oxidation to Acrylic Acid
Catalysis in Lignocellulosic Biorefineries: The Case of Lignin Conversion
Catalysis for Biorefineries: What Industry Needs?
Transformation of Sugars Using Nanoporous Acidic Catalysts
Rational Design of Nanostructured Carbon Materials: Contribution to Cellulose Processing
Nanocatalysis in the Fast Pyrolysis of Lignocellulosic Biomass
Hydrothermal Carbonization and Its Role in Catalysis
Tailored Porous Catalysts for Esterification Processes in Biofuels Production
VOLUME 3
PART III. Nanocatalysis for Environmat Protection and Innovations in Energy Research
Challenges and Role of Catalysis in CO2 Conversion to Chemicals and Fuels
Water Splitting on Particulate Semiconducting Photocatalysts under Visible Light
Visible Light Heterogeneous Nanophotocatalysts (From Catalyst Formulation to Air, Water, and Surface Cleaning Application)
Transferring Knowledge of Electrocatalysis to Photocatalysis: Photocatalytic Water Splitting
Integrated Solar Hydrogen Devices: Cell Design and Nanostructured Components in Liquid and Vapor-Phase Water Splitting
Nanocatalysis in Solid Oxide Cells
Coproduction of Hydrogen and Chemicals by Electrochemical Reforming of Biomass-Derived Alcohols
PART IV. Characterization of Nanocatalysts and Theoretical Methodologies
Probing Inter- and Intraparticle Heterogeneity at the Micro- and Nanoscale in Solid Catalysts Using Optical Techniques
Investigation of Catalytic Surfaces with Surface-Enhanced Solid-State NMR Spectroscopy
State-of-the-Art X-Ray Spectroscopy in Catalysis
Theoretical Tool Box for a Better Catalytic Understanding
Index
VOLUME 1
PART I. Preparation of Nanacataylsts and Their Potential in Catalysis
Liquid-Phase Synthesis of Nanocatalysts
Supported Gold Nanoparticles Leading to Green Chemistry
Application of Nanocarbon Materials to Catalysis
Nano-Oxide Mesoporous Catalysts in Heterogeneous Catalysis
Solution Combustion Synthesis, Characterization, and Catalytic Properties of Oxide Materials
Nanostructured Porous Materials: Synthesis and Catalytic Applications
Core Magnetic Composite for Catalytic Applications
Metal Nanoparticles Supported on Magnetically Separable Materials
Tuning the Activity of Supported Nanoparticles Through Charge Transfer
Metal-Organic Framework-Mediated Synthesis in Catalysis
Sustainable Routes for Synthesis of Zeolite Catalysts
Superior Porous Zeolite Catalysts
Diffusion in Nanocatalysis
Atomic Layer Deposition for Catalysis
Digital Fabrication in Catalytic Technology
VOLUME 2
PART II. Nano Catalysis for Precision on Chemicals Production and Alternative Feedstock Conversion
Nanocatalysis: A Key Role for a Sustainable Energy Future
Nickel Nanocatalysis for Methane Steam Reforming
Development and Performance of Iron Based Oxygen Carriers for Chemical Looping
New Catalytic Initiatives and Challenges in Syngas Conversion
Nonoxidative Dehydroaromatization of Methane
Oxidations with Nanocatalysis
Propane-selective Oxidation to Acrylic Acid
Catalysis in Lignocellulosic Biorefineries: The Case of Lignin Conversion
Catalysis for Biorefineries: What Industry Needs?
Transformation of Sugars Using Nanoporous Acidic Catalysts
Rational Design of Nanostructured Carbon Materials: Contribution to Cellulose Processing
Nanocatalysis in the Fast Pyrolysis of Lignocellulosic Biomass
Hydrothermal Carbonization and Its Role in Catalysis
Tailored Porous Catalysts for Esterification Processes in Biofuels Production
VOLUME 3
PART III. Nanocatalysis for Environmat Protection and Innovations in Energy Research
Challenges and Role of Catalysis in CO2 Conversion to Chemicals and Fuels
Water Splitting on Particulate Semiconducting Photocatalysts under Visible Light
Visible Light Heterogeneous Nanophotocatalysts (From Catalyst Formulation to Air, Water, and Surface Cleaning Application)
Transferring Knowledge of Electrocatalysis to Photocatalysis: Photocatalytic Water Splitting
Integrated Solar Hydrogen Devices: Cell Design and Nanostructured Components in Liquid and Vapor-Phase Water Splitting
Nanocatalysis in Solid Oxide Cells
Coproduction of Hydrogen and Chemicals by Electrochemical Reforming of Biomass-Derived Alcohols
PART IV. Characterization of Nanocatalysts and Theoretical Methodologies
Probing Inter- and Intraparticle Heterogeneity at the Micro- and Nanoscale in Solid Catalysts Using Optical Techniques
Investigation of Catalytic Surfaces with Surface-Enhanced Solid-State NMR Spectroscopy
State-of-the-Art X-Ray Spectroscopy in Catalysis
Theoretical Tool Box for a Better Catalytic Understanding
Index