Buch, Englisch, 469 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 828 g
Reihe: La Matematica per il 3+2
Buch, Englisch, 469 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 828 g
Reihe: La Matematica per il 3+2
ISBN: 978-3-031-19737-6
Verlag: Springer
The book addresses the rigorous foundations of mathematical analysis. The first part presents a complete discussion of the fundamental topics: a review of naive set theory, the structure of real numbers, the topology of R, sequences, series, limits, differentiation and integration according to Riemann.
The second part provides a more mature return to these topics: a possible axiomatization of set theory, an introduction to general topology with a particular attention to convergence in abstract spaces, a construction of the abstract Lebesgue integral in the spirit of Daniell, and the discussion of differentiation in normed linear spaces.
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
Part I First half of the journey.- 1 An appetizer of propositional logic.- 2 Sets, relations, functions in a naïve way.- 3 Numbers.- 4 Elementary cardinality.- 5 Distance, topology and sequences on the set of real numbers.- 6 Series.- 7 Limits: from sequences to functions of a real variable.- 8 Continuous functions of a real variable.- 9 Derivatives and differentiability- 10 Riemann’s integral.- 11 Elementary functions.- Part II Second half of the journey.- 12 Return to Set Theory.- 13 Neighbors again: topological spaces.- 14 Differentiating again: linearization in normed spaces.- 15 A functional approach to Lebesgue integration theory.- 16 Measures before integrals.




