Schumaker / Neamtu | Approximation Theory XIII: San Antonio 2010 | Buch | 978-1-4614-0771-3 | sack.de

Buch, Englisch, 418 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 816 g

Reihe: Springer Proceedings in Mathematics

Schumaker / Neamtu

Approximation Theory XIII: San Antonio 2010


2012
ISBN: 978-1-4614-0771-3
Verlag: Springer

Buch, Englisch, 418 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 816 g

Reihe: Springer Proceedings in Mathematics

ISBN: 978-1-4614-0771-3
Verlag: Springer


These proceedings were prepared in connection with the international conference Approximation Theory XIII, which was held March 7–10, 2010 in San Antonio, Texas. The conference was the thirteenth in a series of meetings in Approximation Theory held at various locations in the United States, and was attended by 144 participants. Previous conferences in the series were held in Austin, Texas (1973, 1976, 1980, 1992), College Station, Texas (1983, 1986, 1989, 1995), Nashville, Tennessee (1998), St. Louis, Missouri (2001), Gatlinburg, Tennessee (2004), and San Antonio, Texas (2007).

Along with the many plenary speakers, the contributors to this proceedings provided inspiring talks and set a high standard of exposition in their descriptions of new directions for research.  Many relevant topics in approximation theory are included in this book, such as abstract approximation, approximation with constraints, interpolation and smoothing, wavelets and frames, shearlets, orthogonal polynomials, univariate and multivariate splines, and complex approximation.

Schumaker / Neamtu Approximation Theory XIII: San Antonio 2010 jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


An Asymptotic Equivalence Between Two Frame Perturbation Theorems - B. A. Bailey.- Growth Behavior and Zero Distribution of Maximally Convergent Rational Approximants - H.-P. Blatt, R. Grothmann, and R. K. Kovacheva.- Generalization of Polynomial Interpolation at Chebyshev Nodes - Debao Chen.- Green’s Functions: Taking Another Look at Kernel Approximation, Radial Basis Functions, and Splines - Gregory E. Fasshauer.- Sparse Recovery Algorithms: Sufficient Conditions in terms of Restricted Isometry Constants - Simon Foucart.- Lagrange Interpolation and New Asymptotic Formulae for the Riemann Zeta Function - Michael I. Ganzburg.- Active GeometricWavelets - Itai Gershtansky, Shai Dekel, and Nira Dyn.- Interpolating Composite Systems - Philipp Grohs.- Wavelets and Framelets within the Framework of Nonhomogeneous Wavelet Systems - Bin Han.- Compactly Supported Shearlets - Gitta Kutyniok, Jakob Lemvig, and Wang-Q Lim.- Shearlets on Bounded Domains - Gitta Kutyniok and Wang-Q Lim.- On Christoffel Functions and Related Quantities for Compactly Supported Measures - D. S. Lubinsky.- Exact Solutions of Some Extremal Problems of Approximation Theory - A. L. Lukashov.- A Lagrange Interpolation Method by Trivariate Cubic C1 Splines of Low Locality - G. N¨urnberger and G. Schneider.- Approximation of Besov Vectors by Paley-Wiener Vectors in Hilbert Spaces - Isaac Z. Pesenson and Meyer Z. Pesenson.- A Subclass of the Length Twelve ParameterizedWavelets - David W. Roach.- Geometric Properties of Inverse Polynomial Images - Klaus Schiefermayr.- On Symbolic Computation of Ideal Projectors and Inverse Systems - Boris Shekhtman.- The Dimension of the Space of Smooth Splines of Degree 8 on Tetrahedral Partitions - Xiquan Shi, Ben Kamau, Fengshan Liu, and Baocai Yin.- On Simultaneous Approximation in Function Spaces - EyadAbu-Sirhan.- Chalmers-Metcalf Operator and Uniqueness of Minimal Projections in ln ¥ and ln1Spaces - Leslaw Skrzypek.- The Polynomial Inverse Image Method - Vilmos Totik.- On Approximation of Periodic Analytic Functions by Linear Combinations of Complex Exponents - Vesselin Vatchev.- Matrix Extension with Symmetry and its Applications - Xiaosheng Zhuang.-


Marian Neamtu is Professor of Mathematics at Vanderbilt University, Nashville, TN.  Larry L. Schumaker is Stevenson Professor of Mathematics at Vanderbilt University, Nashville, TN.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.