E-Book, Englisch, 264 Seiten, eBook
Reihe: Lecture Notes in Mobility
Smart Systems for the Automobile of the Future
E-Book, Englisch, 264 Seiten, eBook
Reihe: Lecture Notes in Mobility
ISBN: 978-3-319-44766-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Supporters and Organisers;8
3;Steering Committee;9
4;Contents;10
5;Networked Vehicles & Navigation;13
6;1 Requirements and Evaluation of a Smartphone Based Dead Reckoning Pedestrian Localization for Vehicle Safety Applications;14
6.1;Abstract;14
6.2;1 Introduction;15
6.3;2 Localization Estimation Filter;16
6.3.1;2.1 Sensor Error Models and Impact of the Error Terms;17
6.3.2;2.2 Error-State Model;18
6.3.3;2.3 Observation Models;18
6.3.3.1;2.3.1 Loosely Coupled GNSS Measurement;19
6.3.3.2;2.3.2 Tightly Coupled GNSS Measurement;19
6.3.3.3;2.3.3 Barometric Height Measurement;19
6.4;3 Methods;20
6.4.1;3.1 Reference Measurement System;20
6.4.2;3.2 Measurement Environment;21
6.5;4 Results;22
6.5.1;4.1 GNSS Receiver and Method Comparison;22
6.5.2;4.2 Velocity Accuracy;22
6.5.3;4.3 Simulated Short-Time GNSS Outage;23
6.5.4;4.4 Location Estimation Accuracy Requirements for Pedestrian Protection Systems;23
6.6;5 Discussion;26
6.7;6 Conclusions;27
6.8;References;28
7;2 Probabilistic Integration of GNSS for Safety-Critical Driving Functions and Automated Driving—the NAVENTIK Project;29
7.1;Abstract;29
7.2;1 Introduction to GNSS in Automotive Applications;30
7.3;2 Confidence Adaptive Use Cases;33
7.3.1;2.1 E-Call Extension;33
7.3.2;2.2 Active Navigation;33
7.4;3 NAVENTIK Measures and System Architecture;35
7.5;4 Conclusion;38
7.6;Acknowledgments;38
7.7;References;39
8;3 Is IEEE 802.11p V2X Obsolete Before it is Even Deployed?;40
8.1;Abstract;40
8.2;1 Introduction;40
8.3;2 Related Work;41
8.4;3 The ETSI ITS-G5 Standard;42
8.4.1;3.1 Access Layer;42
8.4.2;3.2 Networking and Transport Layer;43
8.4.3;3.3 The Common Data Dictionary;44
8.4.4;3.4 Cooperative Awareness Basic Service;44
8.4.5;3.5 Security Services;45
8.5;4 Evaluation Framework and Methodology;45
8.6;5 Results;47
8.7;6 Conclusion and Future Work;49
8.8;Acknowledgments;49
8.9;References;49
9;4 Prototyping Framework for Cooperative Interaction of Automated Vehicles and Vulnerable Road Users;51
9.1;Abstract;51
9.2;1 Introduction;52
9.3;2 Prototyping Hardware Equipment and Sensorial Systems;52
9.3.1;2.1 Overview of Sensorial Systems;52
9.3.2;2.2 Research Vehicle for Automated Driving;53
9.3.3;2.3 Prototyping Testbed—Mobile Road Side Unit;55
9.3.4;2.4 Mobile Devices for VRUs;55
9.4;3 Software Framework for Prototyping;55
9.4.1;3.1 Software Modules Overview;55
9.4.2;3.2 Algorithmic Components;56
9.4.2.1;3.2.1 Vehicle Trajectory Representation;56
9.4.2.2;3.2.2 Intent Estimation;57
9.5;4 Application Scenarios;58
9.5.1;4.1 Manoeuvre Planning for Automated Green Driving and VRU Safety;58
9.5.2;4.2 Cooperative Interactions Between VRU and Automated Vehicles;59
9.6;5 Conclusion;60
9.7;Acknowledgment;60
9.8;References;60
10;5 Communication Beyond Vehicles—Road to Automated Driving;62
10.1;Abstract;62
10.2;1 Trends—Automated Driving and Smart System;63
10.3;2 Robustness—the Need for Smart Vehicles;64
10.4;3 Evolution—Communication Architectures;64
10.5;4 Essentiality—V2X Communication;67
10.6;5 Urgency—Secured Vehicle Architectures;69
10.7;6 Outlook—Requirements Secured Car Communication;71
10.8;References;71
11;6 What About the Infrastructure?;72
11.1;Abstract;72
11.2;1 Variation in Vehicles;72
11.3;2 Evolution in Car Systems;73
11.3.1;2.1 Introduction;73
11.3.2;2.2 Lateral Assistance Systems;73
11.3.3;2.3 Longitudinal Assistance Systems;74
11.3.4;2.4 Automated Cars;75
11.3.5;2.5 Fleets;76
11.3.6;2.6 Location, Communication, Maps;76
11.4;3 Involved Parties;77
11.4.1;3.1 The User;77
11.4.2;3.2 Road Operators;78
11.4.3;3.3 Law Makers;79
11.5;4 Conclusion;79
11.6;References;80
12;Advanced Sensing, Perception and Cognition Concepts;81
13;7 Towards Dynamic and Flexible Sensor Fusion for Automotive Applications;82
13.1;Abstract;82
13.2;1 Introduction;83
13.3;2 Related Work;84
13.4;3 SADA System Architecture;85
13.4.1;3.1 Overview;85
13.4.2;3.2 Distributed System;86
13.5;4 Communication Architecture;89
13.6;5 Preliminary Experimental Results;91
13.7;6 Conclusion;93
13.8;Acknowledgments;93
13.9;References;93
14;8 Robust Facial Landmark Localization for Automotive Applications;95
14.1;Abstract;95
14.2;1 Introduction;96
14.3;2 Related Work;96
14.4;3 Overview—AAM Framework Using MCT Features;97
14.5;4 AAM Using MCT Features;98
14.5.1;4.1 Initial Guess Generation;100
14.5.2;4.2 Model Generation and Parameter Optimization for Matching;100
14.5.3;4.3 Parameter Constraints and Weighting for Matching;101
14.5.4;4.4 Occlusion Handling, Quality and Intelligent Stopping Criterion;101
14.5.5;4.5 Head-Pose Estimation;103
14.6;5 Evaluation;103
14.7;6 Conclusion;105
14.8;References;106
15;9 Using eHorizon to Enhance Camera-Based Environmental Perception for Advanced Driver Assistance Systems and Automated Driving;107
15.1;Abstract;107
15.2;1 Introduction;107
15.3;2 The eHorizon;108
15.4;3 The Problem and Solution of Mapping a Camera Picture to the Real World and Vise Versa;110
15.4.1;3.1 Coordinate System and the Perceptible Range of the Camera;110
15.4.2;3.2 Analysis Based on Linear Geometric Optics;110
15.4.3;3.3 The Inverse-Light-Ray and Its Construction;112
15.4.4;3.4 The Inverse-Light-Ray-Method for Mapping a Picture to the Real Word;113
15.4.5;3.5 The Mapping from Real Word to Picture;114
15.5;4 Conclusion and Outlook;115
15.6;References;115
16;10 Performance Enhancements for the Detection of Rectangular Traffic Signs;117
16.1;Abstract;117
16.2;1 Introduction;117
16.3;2 Related Work;118
16.4;3 Radial Symmetry Detection;119
16.5;4 Improvement Potential;120
16.5.1;4.1 Scaled Voting Arrays;120
16.5.2;4.2 Altered Voting Process;121
16.6;5 Implementation;122
16.7;6 Results;123
16.7.1;6.1 Benchmark;123
16.7.2;6.2 Qualitative Performance;123
16.7.3;6.3 Quantitative Performance;125
16.7.4;6.4 Conclusion;126
16.8;7 Future Work;126
16.9;References;126
17;11 CNN Based Subject-Independent Driver Emotion Recognition System Involving Physiological Signals for ADAS;128
17.1;Abstract;128
17.2;1 Introduction;129
17.3;2 Physiological Signals Used;131
17.4;3 Research Methodology;131
17.4.1;3.1 Physiological Datasets Used;132
17.4.2;3.2 Feature Extraction;132
17.4.3;3.3 Classification Concept;133
17.4.4;3.4 Fusion Concept;136
17.5;4 Experimental Results;137
17.6;5 Conclusion;139
17.7;References;140
18;Safety and Methodological Challenges of Automated Driving;142
19;12 Highly Automated Driving—Disruptive Elements and Consequences;143
19.1;Abstract;143
19.2;1 Disruptive Elements;143
19.2.1;1.1 The Physical Change;144
19.2.2;1.2 The Change of Responsibility;145
19.2.2.1;1.2.1 Higher Safety Expectations;145
19.2.2.2;1.2.2 Safe and Comfortable Use of New Freedom;147
19.2.2.3;1.2.3 Common and Permanent Observation and Learning;148
19.2.3;1.3 The Change of the Vehicle Getting Part of a Mobile Network (Data-Driven Mobility Ecosystem);149
19.3;2 Conclusions;152
19.4;3 Summary and Outlook;153
19.5;Reference;154
20;13 Scenario Identification for Validation of Automated Driving Functions;155
20.1;Abstract;155
20.2;1 Introduction;155
20.3;2 Validation of ADS Functions Using Real-World Scenarios;157
20.3.1;2.1 Definition of a Scenario;157
20.3.2;2.2 Real-World Scenarios for Testing and Validation of ADS;158
20.4;3 Detection of Driving Events in Microscopic Traffic Data;159
20.4.1;3.1 Data Set;159
20.4.2;3.2 Detection Methods;160
20.4.3;3.3 Results;162
20.5;4 Discussion and Conclusion;163
20.6;References;165
21;14 Towards Characterization of Driving Situations via Episode-Generating Polynomials;166
21.1;Abstract;166
21.2;1 Introduction;166
21.3;2 Definition of Situation and Episode;167
21.4;3 Generation and Evaluation of Episodes;168
21.4.1;3.1 Generation;169
21.4.2;3.2 Evaluation;169
21.5;4 Identification of Collisions;170
21.5.1;4.1 Coarse Collision Check;170
21.5.2;4.2 Fine Collision Check;171
21.6;5 Criticality Assessment of the Situation;171
21.7;6 Evaluation of Example Situations;172
21.8;7 Discussion;173
21.9;8 Conclusion;174
21.10;References;174
22;15 Functional Safety: On-Board Computing of Accident Risk;175
22.1;Abstract;175
22.2;1 Introduction;175
22.3;2 A New Solution for Measuring the on-Board Risk of Accident;176
22.4;3 Results and Discussion of Validation Tests;177
22.5;4 Conclusion;179
22.6;References;180
23;Smart Electrified Vehicles and Power Trains;181
24;16 Optimal Predictive Control for Intelligent Usage of Hybrid Vehicles;182
24.1;Abstract;182
24.2;1 Context of This Development for Connected Vehicles;183
24.2.1;1.1 The “from Well to Tank” Path;183
24.2.2;1.2 The “from Tank to Wheels” Path;184
24.2.3;1.3 The “from Wheels to Miles” Path;184
24.2.4;1.4 The Energy Optimization Purpose;185
24.2.5;1.5 The PMP Method;186
24.3;2 Power and Torque Efficiency Optimization in Hybrid Configurations;187
24.3.1;2.1 “Local” Optimization;187
24.3.2;2.2 “PMP”-Based Optimization of Torque Split;188
24.3.3;2.3 Predictive Complement in Connected Configurations;190
24.3.4;2.4 Actual Results;190
24.4;3 Trajectory Optimization on Given Trip;191
24.4.1;3.1 General Rules for Eco-Driving;191
24.4.2;3.2 “PMP”-Based Optimization;192
24.4.3;3.3 Actual Results;193
24.5;4 Merged Optimization;194
24.5.1;4.1 General Optimization System;194
24.6;5 Model-Based Control Impacts on Embedded SW Architectures;195
24.6.1;5.1 Model-Based Concepts;195
24.6.1.1;5.1.1 “External” Plant Model for Validation;195
24.6.1.2;5.1.2 “Internal” Plant Model in SW;196
24.6.2;5.2 Model-in-the-Software (“MIS”) Concepts;196
24.6.2.1;5.2.1 Delay ‘Compensation’;196
24.6.2.2;5.2.2 Onboard Diagnostic;197
24.6.2.3;5.2.3 Model-Based Predictive Control (“MBPC”);197
24.6.2.4;5.2.4 Pontryagin Maximum Principle;197
24.6.3;5.3 Consequences on Hardware Architecture;198
24.7;6 Conclusion;198
24.8;References;199
25;17 Light Electric Vehicle Enabled by Smart Systems Integration;200
25.1;Abstract;200
25.2;1 A Comprehensive Approach for LEV Development;201
25.3;2 Multi-disciplinary Investigation and Definition of the Specifications;202
25.3.1;2.1 Lightweight Seats;203
25.3.2;2.2 Assisted Rear e-Lift;204
25.3.3;2.3 HMI Based on Gesture Recognition;204
25.3.4;2.4 LEV Test in a Realistic Scenario;204
25.4;3 Energy Efficient Torque Management System;205
25.4.1;3.1 Handling Performance and Energy Efficiency;205
25.4.2;3.2 Parking Capability;206
25.5;4 Advanced Steering and Suspension System Design;206
25.5.1;4.1 Front Suspension/Steering System Design;207
25.6;5 Direct-Drive Air Cooled In-Wheel Motor with an Integrated Inverter;207
25.6.1;5.1 Flexible Integration;208
25.6.2;5.2 Thermal Performance Optimization and Mechanical/Thermo-mechanical Robustness Analysis;209
25.7;6 Innovative HMI Based on Gesture Recognition;210
25.8;7 E/E Architecture and Control Systems Development;211
25.9;8 Conclusions;213
25.10;Acknowledgments;214
25.11;References;214
26;18 Next Generation Drivetrain Concept Featuring Self-learning Capabilities Enabled by Extended Information Technology Functionalities;215
26.1;Abstract;215
26.2;1 Introduction;215
26.3;2 State-of-the-Art for Electrical Drive-Train Systems;216
26.4;3 Novel Concept for Drive-Train Architecture;217
26.4.1;3.1 System Architecture and Design;217
26.4.2;3.2 Main Technological Challenges;220
26.5;4 Conclusion;221
26.6;References;222
27;19 Embedding Electrochemical Impedance Spectroscopy in Smart Battery Management Systems Using Multicore Technology;223
27.1;Abstract;223
27.2;1 Introduction;224
27.3;2 Deployment of Safe and Secure Multicore-Based Computing Platforms;225
27.3.1;2.1 Migration of BMS Control Strategies to Multicore Platforms;225
27.3.2;2.2 INCOBAT Multicore Development Framework;225
27.3.3;2.3 Hardware Safety and Security Approach;227
27.4;3 Embedding EIS in Automotive Control Units;229
27.5;4 Thermo-Mechanical Stress Investigations;231
27.5.1;4.1 Ensuring Functionality of the Modules During Development Phase;232
27.5.2;4.2 Environmental and Lifetime Testing;233
27.6;5 Outlook: Demonstrator Vehicle Integration;233
27.7;6 Conclusion;234
27.8;References;235
28;20 Procedure for Optimization of a Modular Set of Batteries in a High Autonomy Electric Vehicle Regarding Control, Maintenance and Performance;236
28.1;Abstract;236
28.2;1 Introduction;236
28.3;2 Modeling of Gorila EV’s Batteries;238
28.3.1;2.1 Batteries Operation;238
28.3.2;2.2 Choice of Batteries;238
28.4;3 Methodology;240
28.5;4 Testing and Analysis;240
28.5.1;4.1 Definition of Parameters;240
28.5.2;4.2 Test Characteristics;241
28.5.2.1;4.2.1 Vehicle in Initial State;241
28.5.2.2;4.2.2 Vehicle After a Balancing of Batteries and Its Corresponding Full Charge;242
28.6;5 Results;242
28.6.1;5.1 Vehicle in Initial Stage;242
28.6.2;5.2 Vehicle After a Balancing of Batteries and Its Corresponding Full Charge;245
28.7;6 Protocol for Selective Charging of the Unbalanced Batteries;246
28.8;7 Summary and Conclusions;247
28.9;References;248
29;21 Time to Market—Enabling the Specific Efficiency and Cooperation in Product Development by the Institutional Role Model;249
29.1;Abstract;249
29.2;1 Introduction;250
29.3;2 Institutional Economic Role Model as Methodological Approach;252
29.4;3 Literature Review—Hypothesis Development;253
29.5;4 Methodology—Research Design;257
29.6;5 Statistical Analysis and Results;258
29.7;6 Approach for a Procedure Model;260
29.8;7 Conclusion;262