Buch, Englisch, 483 Seiten, Book, Format (B × H): 155 mm x 235 mm, Gewicht: 830 g
Buch, Englisch, 483 Seiten, Book, Format (B × H): 155 mm x 235 mm, Gewicht: 830 g
ISBN: 978-3-540-64075-2
Verlag: Springer
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Preface.- About the Editors.- Authors.- Section I: Overview and Basic Principles.- 1 Introduction.- 1.1 Introduction.- 1.2 Remote Sensing Defined.- 1.3 The Nature of Remote Sensing Data.- 1.4 Satellite Systems.- 1.4.1 Remote Sensing Platforms.- 1.4.2 Remote Sensing Sensors.- 1.4.3 Spatial Resolution.- 1.4.4 Temporal Resolution.- 1.5 Remote Sensing and Hydrology.- 1.6 Structure of the Book.- 2 Physical Principles and Technical Aspects of Remote Sensing.- 2.1 Introduction.- 2.2 The Electromagnetic Spectrum and Radiation Laws.- 2.3 Atmospheric Propagation.- 2.4 Reflection and Emission Characteristics of Natural Media.- 2.5 Sensor Principles.- 2.6 Summary of Current and Future Earth Observation Missions.- 3 Processing Remotely Sensed Data: Hardware and Software Considerations.- 3.1 Image Processing System Characteristics.- 3.1.1 The Central Processing Unit (CPU): Personal Computers, Workstations and Mainframes.- 3.1.2 Number of Analysts on a System and Mode of Operation.- 3.1.3 Serial versus Parallel Image Processing, Arithmetic Coprocessor, and Random Access Memory (RAM).- 3.1.4 Operating System and Software Compilers.- 3.1.5 Mass Storage.- 3.1.6 Screen Display Resolution.- 3.1.7 Screen Color Resolution.- 3.1.8 Image Scanning (Digitization) Considerations.- 3.2 Image Processing and GIS Software Requirement.- 3.2.1 Preprocessing.- 3.2.2 Display and Enhancement.- 3.2.3 Remote Sensing Information Extraction.- 3.2.4 Photogrammetric Information Extraction.- 3.2.5 Metadata and Image/Map Lineage Documentation.- 3.2.6 Image and Map Cartographic Composition.- 3.2.7 Geographic Information Systems (GIS).- 3.2.8 Utilities.- 3.3 Commercial and Publicly Available Digital Image Processing Systems.- 3.4 Summary.- 4 Integration of Remotely Sensed Data into Geographical Information Systems.- 4.1 Introduction.- 4.2 General Approach.- 4.2.1 Raster and Vector Data Structures.- 4.2.2 Current Approaches to the Integration.- 4.2.3 Errors Associated with Geographical Processing.- 4.3 Current Applications.- 4.3.1 Watershed Database Development.- 4.3.2 Integrated Use of Elevation Data.- 4.3.3 Land-use/Land-cover Change Detection.- 4.3.4 Modeling Watershed Runoff.- 4.3.5 Monitoring and Modeling of Water Quality.- 4.3.6 Soil Erosion Monitoring.- 4.4 Future Perspectives.- Section II: Remote Sensing Application to Hydrologic Monitoring and Modeling.- 5 Remote Sensing in Hydrological Modeling.- 5.1 Introduction.- 5.2 Remote Sensing in Operational Hydrologic Modeling.- 5.3 Remote Sensing in Coupled Water-Energy Balance Modeling.- 5.4 Remote Sensing Approach.- 5.4.1 Solar radiation.- 5.4.2 Do wnwelling longwave.- 5.4.3 Precipitation.- 5.4.4 Air Temperature.- 5.4.5 Surface Air Humidity.- 5.5 Modeling Example: The Red River Arkansas Basin.- 5.6 Future Directions.- Colour Plates of Chaps. 2–5.- 6 Precipitation 1ll.- 6.1 Introduction.- 6.2 General Approach.- 6.2.1 Ground-based radar.- 6.2.2 Use of visible and infrared satellite data.- 6.2.3 Use of passive microwave satellite data.- 6.2.4 Space-borne radar.- 6.3 Current Techniques.- 6.3.1 Single polarisation radar measurements of rainfall.- 6.3.2 Measurement of snowfall and hail.- 6.3.3 Multi-parameter radar.- 6.3.4 Satellite cloud indexing and life history methods of rainfall estimation.- 6.3.5 Bispectral techniques.- 6.3.6 Passive microwave estimates of rainfall from space.- 6.3.7 Sampling errors.- 6.4 The potential for improvement.- 6.4.1 Current performance levels.- 6.4.2 The future.- 7 Land-use and Catchment Characteristics.- 7.1 Introduction.- 7.2 Land cover Mapping with Remote Sensing.- 7.3 Vegetation Indices.- 7.3.1 Simple Vegetation Indices.- 7.3.2 Normalized Difference Vegetation Index (NDVI).- 7.3.3 Refined estimates.- 7.3.4 Multi-temporal Vegetation Index.- 7.4 Thematic Classification.- 7.4.1 Image Classification Methods.- 7.4.2 Maximum Likelihood Classification.- 7.4.3 Discussion.- 7.4.4 Probability estimation refinements.- 7.4.5 Segmentation.- 7.4.6 Case study in the Pantanal Area, Brazil.- 7.5 Radar.- 8 Evaporation.- 8.1. Introduction.- 8.1.1 General.- 8.1.2 Remote sensing of land evaporation.- 8.2 Evaporation and radiometric variables.- 8.2.1 Potential Evaporation.- 8.2.2 Actual Evaporation.- 8.3 Remote Sensing of Land Evaporation: Applications and Modelling Approaches.- 8.3.1 General.- 8.3.2 Linear relationships between evaporation and land surface temperature [1].- 8.3.3 Improved linear relationships [2].- 8.3.4 Relationships between evaporation, surface, temperature and spectral indices [3].- 8.3.5 Soil Vegetation Atmosphere Transfer (SVAT) models [4].- 8.3.6 Integrated SVAT and Planetary Boundary Layer (PBL) models [5].- 8.4 Current trends: improved observations and improved parameterizations.- 8.4.1 Local maximum evaporation and land surface temperature [6].- 8.4.2 Improved observation of land surface variables [7].- 8.5 Spatial variability.- 8.6 Accuracy.- 8.7 Applications.- 8.8 Current and Future Observations.- 8.9 Summary and Conclusions.- Colour Plates of Chaps. 6–8.- 9 Soil Moisture.- 9.1 Introduction.- 9.2 General Approach.- 9.3 Sensor-Target Interactions.- 9.4 Hydrologic Examples.- 9.5 Future Microwave Remote Sensing of Soil Moisture.- 10 Remote Sensing of Surface Water.- 10.1 Introduction.- 10.2 Surface Water Detection.- 10.3 Lake and Reservoir Area Estimates.- 10.4 Wetlands.- 10.5 Lake Levels.- 10.6 River Levels and Flows.- 10.7 Flood Extent.- 10.8 Conclusion.- 11 Snow and Ice.- 11.1 Role of Snow and Ice.- 11.2 General Approach.- 11.2.1 Gamma Radiation.- 11.2.2 Visible Imagery.- 11.2.3 Thermal Infrared.- 11.2.4 Passive and Active Microwave.- 11.2.5 Related Applications.- 11.3 Current Applications.- 11.3.1 NOHRSC- Snow Cover and Snow Water Equivalent Products.- 11.3.2 Canadian Prairie Snow Water Equivalent Mapping.- 11.3.3 Snowmelt Runoff Forecast Operations.- 11.4 Future Directions.- 11.4.1 Improved Resolution in the Passive Microwave.- 11.4.2 Improved Algorithms in the Passive Microwave.- 11.4.3 Outlook for Radar Applications.- 11.4.4 Integration of Various Data Types.- Colour Plates of Chaps. 9–11.- 12 Soil Erosion.- 12.1 Introduction.- 12.2 Basis for using Remote Sensing.- 12.3 Applications.- 12.4 Case Studies.- 12.4.1 Photointerpretation/Photogrammetry.- 12.4.2 Model/GIS Inputs.- 12.4.3 Spectral Properties.- 12.4.4 Topographic Measurements.- 12.5 Future Directions.- 13 Water Quality.- 13.1 Introduction.- 13.2 Basis for using Remote Sensing.- 13.3 Application.- 13.4 Case Studies.- 13.4.1 Suspended Sediments.- 13.4.2 Chlorophyll.- 13.4.3 Temperature.- 13.4.4 Oils.- 13.5 Future Directions.- 14 Groundwater.- 14.1 Introduction.- 14.2 Conceptualization of the hydrogeology.- 14.2.1 The three dimensional hydrogeologic situation.- 14.2.2 Groundwater surface.- 14.2.3 Flow systems.- 14.3 Aspects of water budgets.- 14.3.1 Groundwater irrigation drafts.- 14.3.2 Recharge.- 14.4 Hard rock terrain and lineaments.- 14.5 Groundwater management and conclusions.- 14.6 Conclusions and future perspectives.- Section III: Water Management with the Aid of Remote Sensing Data.- 15 Introduction to and General Aspects of Water Management with the aid of Remote Sensing.- 15.1 Introduction.- 15.2 Potential of remote sensing in water management.- 15.2.1 Surveying and mapping.- 15.2.2 Spatial analysis and regionalization.- 15.2.3 Monitoring and forecasting.- 15.3 River basin planning with the aid of remote sensing.- 15.3.1 Introduction.- 15.3.2 Hydrologic monitoring & forecasting.- 15.3.3 Upstream-downstream interrelationships in river basins.- 15.4 Watershed management with the aid of remote sensing.- 15.4.1 Introduction.- 15.4.2 Hydrologic photo-interpretation for watershed management.- 15.5 Small-scale water resource development and remote sensing.- 15.5.1 Introduction.- 15.5.2 Runoff water harvesting with the aid of remote sensing.- 15.5.3 Flood spreading and groundwater recharge.- 15.6 Irrigation water management and remote sensing.- 15.7 Decision support systems for water management.- 15.7.1 Introduction.- 15.7.2 Expert and decision support systems.- Colour Plates of Chaps. 12–15.- 16 Flood Forecasting and Control.- 16.1 Introduction.- 16.2 General Approach.- 16.2.1 Modeling Philosophy.- 16.2.2 Remote Sensing Data, Types and Acquisition.- 16.2.3 Determination of Hydro-meteorological Information from Remote Sensing Data.- 16.2.4 Transformation of Area Precipitation into a Real-time Forecast of a Runoff Hydrograph.- 16.3 Real-time Flood Control with the Aid of Flood Forecasts Based on Remote Sensing Data — an Example.- 16.3.1 Basic Principle.- 16.3.2 Radar Rainfall Measurements in the Günz River Catchment.- 16.3.3 Quantitative Precipitation Forecast (QPF).- 16.3.4 Rainfall-Runoff-Model Application for Flood Forecasting.- 16.3.5 Optimum Reservoir Operation Based on Forecast Flood Hydrographs.- 16.4 Flood Forecasting and Control in an Urban Environment.- 16.5 Future Perspectives.- 17 Irrigation and Drainage.- 17.1 Introduction.- 17.1.1 Current non-remote sensing approaches and limitations.- 17.1.2 Reviews of remote sensing applications in irrigation and drainage.- 17.2 General Approach.- 17.2.1 Applications versus Observables and Algorithms.- 17.2.2 Theory and conceptual approach.- 17.2.3 Examples of applications.- 17.3 Current Applications.- 17.3.1 General.- 17.3.2 High resolution mapping of irrigated lands.- 17.3.3 Crop water requirements — Visible and Near Infrared.- 17.3.4 Crop water stress — Thermal Infrared.- 17.3.5 Catchment hydrology.- 17.3.6 Detection of saline areas.- 17.3.7 Irrigation management.- 17.4 Current and future observations.- 17.5 Future Directions and Potential.- 18 Computation of Hydrological Data for Design of Water Projects in Ungauged River Basins.- 18.1 Introduction.- 18.2 General Approach.- 18.2.1 MODUL I: Satellite system, data processing.- 18.2.2 MODUL II: Assessment of the monthly area precipitation on the basis of multi-temporal satellite imagery.- 18.2.3 MODUL III: Estimation of runoff values.- 18.3 Application.- 18.3.1 Study area and data used.- 18.3.2 Assessment of the monthly area precipitation with the aid of multi-temporal B2-Meteosat satellite imagery.- 18.3.3 Rainfall — Runoff Model.- 18.4 Further Applications.- 18.5 Summary and Discussion.- 19 Detection of Land Cover Change Tendencies and their Effect on Water Management.- 19.1 General Remarks.- 19.2 Hydrological Modelling and Land Cover Change.- 19.3 A Case Study: Land Use Change Detection by Remote Sensing in the Sauer River Basin, Western Europe.- 19.4 Summary.- Colour Plates of Chaps. 16–19.- Section IV: Future Perspectives.- 20 Future Perspectives.- 20.1 Introduction.- 20.2 Status of Hydrologic Research and Modeling.- 20.3 Water Management.- 20.4 Data Issues in Hydrology and Water Resources Management.- 20.5 Intensive Field Campaigns.- 20.6 Existing Sensors and Platforms.- 20.7 Planned and Proposed Sensors and Platforms.- 20.8 Remote Sensing and Future Needs in Hydrology.- Appendix 20.1 Existing and Future Remote Sensing Satellites and Sensors Relevant to Hydrological Applications.- Appendix 20.2 Specification for Sensors Listed in Appendix 20.1.- List of Acronyms.




