Schrieffer | Handbook of High -Temperature Superconductivity | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 627 Seiten

Schrieffer Handbook of High -Temperature Superconductivity

Theory and Experiment
1. Auflage 2007
ISBN: 978-0-387-68734-6
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

Theory and Experiment

E-Book, Englisch, 627 Seiten

ISBN: 978-0-387-68734-6
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



Since the 1980s, a general theme in the study of high-temperature superconductors has been to test the BCS theory and its predictions against new data. At the same time, this process has engendered new physics, new materials, and new theoretical frameworks. Remarkable advances have occurred in sample quality and in single crystals, in hole and electron doping in the development of sister compounds with lower transition temperatures, and in instruments to probe structure and dynamics. Handbook of High-Temperature Superconductvity is a comprehensive and in-depth treatment of both experimental and theoretical methodologies by the the world's top leaders in the field. The Editor, Nobel Laureate J. Robert Schrieffer, and Associate Editor James S. Brooks, have produced a unified, coherent work providing a global view of high-temperature superconductivity covering the materials, the relationships with heavy-fermion and organic systems, and the many formidable challenges that remain. 

Schrieffer Handbook of High -Temperature Superconductivity jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;Acknowledgments;10
3;Contents;11
4;List of Contributors;21
5;Credit Lines;23
5.1;Chapter 1;23
5.2;Chapter 2;23
5.3;Chapter 3;25
5.4;Chapter 4;26
5.5;Chapter 5;27
5.6;Chapter 6;28
5.7;Chapter 7;29
5.8;Chapter 8;29
5.9;Chapter 9;30
5.10;Chapter 10;30
5.11;Chapter 11;31
5.12;Chapter 12;31
5.13;Chapter 13;31
5.14;Chapter 14;32
5.15;Chapter 16;32
6;From Single- to Bipolarons with Jahn– Teller Character and Metallic Cluster- Stripes in Hole- Doped Cuprates;33
6.1;1.1. The Original Jahn–Teller Polaron Concept and Its Shortcomings;33
6.2;1.2. Recent Experiments Probing Delocalized Properties;34
6.3;1.3. Probing of Local Properties;36
6.4;1.4. The Intersite JT-Bipolaron Concept Derived from EXAFS, EPR, and Neutron Scattering;37
6.5;1.5. Two-Component Scenario;39
6.6;1.6. JT-Bipolarons as the Elementary Quasiparticles to Understand the Phase Diagram and Metallic Clusters or Stripes;41
6.7;1.7. Substantial Oxygen Isotope Effects;44
6.8;1.8. Concluding Remarks;49
6.9;Acknowledgment;49
6.10;Bibliography;49
7;Tunneling Measurements of the Cuprate Superconductors;51
7.1;2.1. Introduction;51
7.2;2.2. General Concepts;52
7.3;2.3. Means of Preparing Tunnel Junctions;64
7.4;2.4. p-Rings and 0 - p-Junctions;71
7.5;2.5. Tunneling Spectroscopy;76
7.6;2.6. Conclusions;107
7.7;Bibliography;107
8;Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron– Phonon Coupling in Cuprate Superconductors;119
8.1;3.1. Introduction;119
8.2;3.2. Angle-Resolved Photoemission Spectroscopy;120
8.3;3.3. Electronic Structures of High Temperature Superconductors;127
8.4;3.4. Electron- Phonon Coupling in High Temperature Superconductors;130
8.5;3.5. Summary;169
8.6;Acknowledgments;170
8.7;Bibliography;170
9;Microwave Electrodynamics of High Temperature Superconductors;177
9.1;4.1. Introduction;177
9.2;4.2. Electrodynamics of Superconductors;178
9.3;4.3. Experimental Techniques;188
9.4;4.4. Measurement of Surface Resistance Rs;195
9.5;4.5. Penetration Depth;198
9.6;4.6. Surface Resistance;211
9.7;4.7. Fluctuations;234
9.8;Acknowledgments;241
9.9;Bibliography;241
10;Magnetic Resonance Studies of High Temperature Superconductors;247
10.1;5.1. Introduction;247
10.2;5.2. Basic NMR Theory and Experiment;248
10.3;5.3. NMR in Normal State Metals;253
10.4;5.4. NMR in Conventional BCS Superconductors;255
10.5;5.5. The Cuprate Spin Hamiltonian;256
10.6;5.6. YBCO above Tc;258
10.7;5.7. YBCO Below TC: NMR Evidence About the Pairing State;268
10.8;5.8. LSCO;272
10.9;5.9. Brief Review of EPR;284
10.10;Acknowledgment;285
10.11;Bibliography;286
11;Neutron Scattering Studies of Antiferromagnetic Correlations in Cuprates;289
11.1;6.1. Introduction;289
11.2;6.2. Magnetic Excitations in Hole-Doped Superconductors;291
11.3;6.3. Antiferromagnetism in the Parent Insulators;296
11.4;6.4. Destruction of Antiferromagnetic Order by Hole Doping;304
11.5;6.5. Stripe Order and Other Competing States;306
11.6;6.6. Variation of Magnetic Correlations with Doping and Temperature in Cuprates;312
11.7;6.7. Effects of Perturbations on Magnetic Correlations;316
11.8;6.8. Electron-Doped Cuprates;318
11.9;6.9. Discussion;320
11.10;Acknowledgments;322
11.11;Bibliography;322
12;Optical Conductivity and Spatial Inhomogeneity in Cuprate Superconductors;331
12.1;7.1. Introduction;331
12.2;7.2. Low Frequency Optical Conductivity in the Cuprates;333
12.3;7.3. Optical Conductivity vs. Hole Concentration in BSCCO;341
12.4;7.4. Collective Mode Contribution to Optical Conductivity;346
12.5;7.5. Summary and Outlook;353
12.6;Bibliography;355
13;What Tc can Teach About Superconductivity;357
13.1;8.1. Introduction;357
13.2;8.2. Cuprate Superconductivity;358
13.3;8.3. Interactions Beyond the CuO2 Layers;360
13.4;8.4. Superconductivity Originating in the CuO2 Layers;371
13.5;8.5. Summary;373
13.6;Acknowledgments;373
13.7;Bibliography;373
14;High- Tc Superconductors: Thermodynamic Properties;377
14.1;9.1. Introduction;377
14.2;9.2. Low-Temperature Specific Heat;385
14.3;9.3. Chemical Substitutions;392
14.4;9.4. Stripes;399
14.5;9.5. Specific-Heat Anomaly at Tc: Fluctuations; BCS Transition, BEC;404
14.6;9.6. Vortex-Lattice Melting;412
14.7;9.7. Calorimetric Evidence for the Pseudogap;418
14.8;Bibliography;422
15;Normal State Transport Properties;430
15.1;10.1. Introduction;430
15.2;10.2. Evolution of the In-Plane Resistivity with Doping;431
15.3;10.3. The Out-of-Plane Transport;437
15.4;10.4. The Anomalous Hall Coefficient and Violation of Kohler’s Rule;441
15.5;10.5. Impurity Studies;447
15.6;10.6. Thermal Transport;448
15.7;10.7. Discussion and Summary;450
15.8;Bibliography;453
16;High-Pressure Effects;457
16.1;11.1. Introduction;457
16.2;11.2. Elemental Superconductors;460
16.3;11.3. Binary Superconductors;467
16.4;11.4. Multiatom Superconductors: High- Tc Oxides;472
16.5;11.5. Conclusions and Outlook;485
16.6;Acknowledgments;487
16.7;Bibliography;487
17;Superconductivity in Organic Conductors;493
17.1;12.1. Introduction;493
17.2;12.2. Organic Building Blocks and Electronic Structure;494
17.3;12.3. “Conventional” Properties of Organic Superconductors;496
17.4;12.4. The “Standard Model” for Metallic, Insulating, and Antiferromagnetic Ground States;505
17.5;12.5. “Unconventional” Properties of Organic Superconductors;511
17.6;12.6. Comparison of High Tc Superconductors with Organic Conductors;516
17.7;12.7. Summary and Future Prospects;518
17.8;Appendix I. Further Reading in the Area of Organic Conductors;519
17.9;Acknowledgments;520
17.10;Bibliography;520
18;Numerical Studies of the 2D Hubbard Model;524
18.1;13.1. Introduction;524
18.2;13.2. Numerical Techniques;525
18.3;13.3. Properties of the 2D Hubbard Model;532
18.4;13.4. The Structure of the Effective Pairing Interaction;545
18.5;13.5. Conclusions;551
18.6;Acknowledgments;553
18.7;Bibliography;553
19;t- J Model and the Gauge Theory Description of Underdoped Cuprates;556
19.1;14.1. Introduction;556
19.2;14.2. Basic Electronic Structure of the Cuprates;557
19.3;14.3. Phenomenology of the Underdoped Cuprates;560
19.4;14.4. Introduction to RVB and a Simple Explanation of the Pseudogap;563
19.5;14.5. Slave-Boson Formulation of t–J Model and Mean Field Theory;565
19.6;14.6. U( 1) Gauge Theory of the URVB State;570
19.7;14.7. SU( 2) Slave- Boson Theory of Doped Mott Insulators;575
19.8;14.8. Spin Liquids, Deconfinement, and the Emergence of Gauge Fields and Fractionalized Particles;586
19.9;14.9. Application of Gauge Theory to the High Tc Superconductivity Problem;588
19.10;14.10. Summary and Outlook;592
19.11;Acknowledgments;594
19.12;Bibliography;594
20;How Optimal Inhomogeneity Produces High Temperature Superconductivity;598
20.1;15.1. Why High Temperature Superconductivity is Difficult;599
20.2;15.2. Dynamic Inhomogeneity-Induced Pairing Mechanism of HTC;601
20.3;15.3. Superconductivity in a Striped Hubbard Model: A Case Study;605
20.4;15.4. Why There is Mesoscale Structure in Doped Mott Insulators;611
20.5;15.5. Weak Coupling Vs. Strong Coupling Perspectives;613
20.6;15.6. What is so Special About the Cuprates?;614
20.7;15.7. Coda: High Temperature Superconductivity is Delicate But Robust;619
20.8;Acknowledgments;620
20.9;Appendix A: What Defines “High Temperature Superconductivity”;621
20.10;Bibliography;621
21;Superconducting States on the Border of Itinerant Electron Magnetism;625
21.1;16.1. Introduction;625
21.2;16.2. Uncharted Territory: The New Frontier;625
21.3;16.3. Logarithmic Fermi Liquid;626
21.4;16.4. The Puzzle of MnSi;627
21.5;16.5. Superconductivity on the Border of Magnetism;628
21.6;16.6. Three Dimensional vs. Quasi-Two-Dimensional Structures;628
21.7;16.7. Density Mediated Superconductivity;629
21.8;16.8. The Search for Superconductivity on the Border of Itinerant Ferromagnetism;630
21.9;16.9. Why Don’t All Nearly Magnetic Materials Show Superconductivity?;633
21.10;16.10. From Weak to Strong Coupling;635
21.11;16.11. Superconductivity Without Inversion Symmetry;636
21.12;16.12. Quantum Tuning;636
21.13;16.13. Concluding Remarks;639
21.14;Acknowledgements;639
21.15;Bibliography;640
22;Index;643



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.