Buch, Englisch, 729 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1112 g
Reihe: Geosystems Mathematics
A Scalar, Vectorial, and Tensorial Setup
Buch, Englisch, 729 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1112 g
Reihe: Geosystems Mathematics
ISBN: 978-3-662-65694-5
Verlag: Springer
This book is an enlarged second edition of a monograph published in the Springer AGEM2-Series, 2009. It presents, in a consistent and unified overview, a setup of the theory of spherical functions of mathematical (geo-)sciences. The content shows a twofold transition: First, the natural transition from scalar to vectorial and tensorial theory of spherical harmonics is given in a coordinate-free context, based on variants of the addition theorem, Funk-Hecke formulas, and Helmholtz as well as Hardy-Hodge decompositions. Second, the canonical transition from spherical harmonics via zonal (kernel) functions to the Dirac kernel is given in close orientation to an uncertainty principle classifying the space/frequency (momentum) behavior of the functions for purposes of data analysis and (geo-)application. The whole palette of spherical functions is collected in a well-structured form for modeling and simulating the phenomena and processes occurring in the Earth's system. The result is a work which, while reflecting the present state of knowledge in a time-related manner, claims to be of largely timeless significance in (geo-)mathematical research and teaching.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Geometrie Geometrie der modernen Physik
- Naturwissenschaften Physik Angewandte Physik Geophysik
- Geowissenschaften Geologie Geophysik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Mathematische Analysis Vektoranalysis, Physikalische Felder
Weitere Infos & Material
Basic Settings and Spherical Nomenclature.- Scalar Spherical Harmonics.- Green’s Functions and Integral Formulas.- Vector Spherical Harmonics.- Tensor Spherical Harmonics.- Scalar Zonal Kernel Functions.- Vector Zonal Kernel Functions.- Tensorial Zonal Kernel Functions.- Zonal Function Modeling of Earth’s Mass Distribution.