Schneider | Sparse Signal Modeling in Video Coding | Buch | 978-3-8440-8401-6 | sack.de

Buch, Englisch, Band 24, 127 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 212 g

Reihe: Aachen Series on Multimedia and Communications Engineering

Schneider

Sparse Signal Modeling in Video Coding


1. Auflage 2022
ISBN: 978-3-8440-8401-6
Verlag: Shaker

Buch, Englisch, Band 24, 127 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 212 g

Reihe: Aachen Series on Multimedia and Communications Engineering

ISBN: 978-3-8440-8401-6
Verlag: Shaker


Digital video content dominates the overall internet traffic in form of streaming or video telephony, which was especially observable during the shutdown due to the COVID-19 pandemic in the first half of the year 2020. Modern video coding standards, such as HEVC and VVC, rely on the hybrid video coding scheme, which combines the principle of a DPCM loop with transform coding, and was not changed over the last decades.

However, data driven approaches have proven their potential in regard to classical inverse problems in image processing recently. In particular, the Sparse-Land signal model showed promising results for the problems of e.g. denoising and super-resolution. Therefore, the concepts of dictionary learning and sparse coding are reviewed in this work, and an improved patch combination method for dictionary learning-based super-resolution is presented.

Moreover, this thesis builds on the conjecture that the application of pretrained sparse image models in the coding loop or in higher level coding concepts allows for compression rates which go beyond the performance of state-of-the-art video coding standards. Consequently, the main contribution of this work is the analysis of sparse signal models in the context of Versatile Video Coding (VVC). To this end, a sparse coding-based loop filter is proposed, dictionary learning-based super-resolution is introduced to several higher level coding concepts, and a sparse coding-based intra prediction method is developed. All approaches were evaluated experimentally and the reported results indicate their potential for a compression performance beyond video coding standards such as HEVC and VVC.

Schneider Sparse Signal Modeling in Video Coding jetzt bestellen!

Autoren/Hrsg.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.